PHYS201 SUMMARY by Augustin Winther © Version 4					
Defu	nition	The	ory		
	Mi	sc.			
Date: 2025-05-21 Contact info at: winther.io					

	1/10 Q.M. FORMALISM Hilbert space \mathcal{H} in Q.M. All <i>square-integrable</i> (L^2) functions on \mathbb{R} . In Q.M., all L^2 functions representing bound states approach 0 at $\pm \infty$. Dirac Bra-ket notation ket: $ v\rangle$ is a column vector in \mathcal{H} bra: $\langle f $ is a linear map $f: \mathcal{H} \to \mathbb{C}$ A bra acting on a ket is noted as $\langle f v\rangle = \langle f v\rangle \in \mathbb{C}$ Bras are row vectors in <i>dual-space</i> of \mathcal{H}				Inner product in \mathcal{H} The inner product of $ f\rangle$ and $ g\rangle$ $\langle f g\rangle = \langle f g\rangle \equiv \int_{-\infty}^{\infty} f(x)^* g(x) dx$ where $\langle f = f\rangle^{\dagger} = f\rangle^{*^{\intercal}}$ Note that $\langle f g\rangle = \langle g f\rangle^*$ and f			
		Observa	able operators (i	n positic	on space)		$\langle f f\rangle = \int_{-\infty} f(x) ^2 dx \ge 0 \in \mathbb{R}$	
	Name	Ge	neral def.	Cartesian def.			where $\langle f f \rangle = 0 \iff f(x) = 0$	
	Position Momentum	Í	$\mathbf{r} = \mathbf{r}$ $\mathbf{r} = -i\hbar\nabla$	$\hat{\mathbf{p}}_k$			f normalized IFF $\langle f f \rangle =$ f and g orthogonal IFF $\langle f g \rangle =$	
	Kinetic Energy	$\widehat{T} = \frac{1}{2m}$	$\widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}} = -\frac{\hbar^2}{2m} \nabla^2$	\widehat{T}_k	$= -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial k^2}, k = x, y, z$		$\{f_n\}$ orthonormal IFF $\langle f_n f_n \rangle =$ and $\langle f_m f_n \rangle =$	
	Potential Energy	$\hat{V} =$	$V(\mathbf{r},t) = V$		Situation dependent		$\{f_n\}$ is complete if any other function g in \mathcal{H} can be expressed as	
	Total Energy	<u>Time-</u> Time-in	<u>dep. pot.:</u> $\widehat{E} = i\hbar \frac{\partial}{\partial t}$ dep. pot.: $\widehat{E} = E$		Situation dependent		$g(x) = \sum_{n=1}^{\infty} c_n f_n(x) \text{ where } c_n = \langle j \rangle$ The adjoint + is the same as tak	
	Hamiltonian	Hamiltonian $\widehat{H} = \widehat{T} + \widehat{V} = -\frac{\hbar^2}{2m}\nabla^2 + V$ Angular Momentum $\widehat{L} = \widehat{r} \times \widehat{p}$		$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V$			conjugate.	
	Angular Momentum			î î î	$\begin{aligned} \dot{x}_{x} &= -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \\ \dot{x}_{y} &= -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \\ \dot{x}_{z} &= -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \end{aligned}$		Eigenvalue equation $\widehat{Q}\Psi = q\Psi$ Ψ is an eigenfunction of \widehat{Q} , and \widehat{Q}	
	Spin-1/2 Angular Momentum $\hat{\mathbf{S}} = \frac{\hbar}{2}\boldsymbol{\sigma}$ ($\boldsymbol{\sigma}$ = vector whose componentiate the Pauli matrices σ_k)		$\hat{\mathbf{S}} = \frac{\hbar}{2} \boldsymbol{\sigma}$ whose components auli matrices σ_k)	$\sigma_x =$	$\hat{S}_{k} = \frac{\hbar}{2}\sigma_{k}, k = x, y, z$ where $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$		the corresponding eigenvalue Observable operator An operator whose eigenvalue represent outcomes of measurem	
	$ \hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}} $		Ĵ _k	$\hat{\mathbf{L}} = \hat{\mathbf{L}}_k + \hat{\mathbf{S}}_k, \ k = x, y, z$		Completeness "axiom" The eigenfunctions of an observa		
ſ	Hermitian operators					function in \mathcal{H} can be expressed a lin. comb. of them.		
Hermitian if and only if $\langle f \widehat{Q}f \rangle = \langle \widehat{Q}f f \rangle \forall f$ Same as $\langle f \widehat{Q}f \rangle = \langle f \widehat{D}f f \rangle \forall f$ $\langle Q \rangle$ $\Rightarrow \langle Q \rangle$		representing obse are Hermitian, be $\langle Q \rangle \in \mathbb{R}$ $\Rightarrow \langle Q \rangle = \langle Q$ $\Rightarrow \langle f \widehat{0} f \rangle = \langle \widehat{0} \rangle$	ervables ecause \rangle^* $f f\rangle$	A Hermitian operator is equal to its adjoint (self- adjoint) $\widehat{\Omega} = \widehat{\Omega}^{\dagger}$		State of Q.I The state of a system $ \Psi(t)\rangle$ is a eigenfunctions. The I		
	$\sqrt{1}$	~) / •)	/ (ן נא) – / נאן נא <i>–</i>		$Q = Q^{2}$			

and $ g\rangle$ is	the operator					
$g(x)dx \in \mathbb{C}$	$\widehat{C} = \left[\widehat{A}, \widehat{B}\right] \equiv \widehat{A}\widehat{B} - \widehat{B}\widehat{A}$					
$ f\rangle^{*^{T}}$	\widehat{A} and \widehat{B} commute IFF $\widehat{C} = 0$					
and that						
0 - 5	Notable co	Notable commutators				
≥0∈ℝ	$[\hat{\mathbf{x}}, \hat{\mathbf{p}}_{\chi}] = i\hbar \qquad [\hat{\mathbf{r}}, \hat{\mathbf{p}}]$	$= 3i\hbar$ $[\hat{p}, \hat{T}] = 0$				
(x) = 0	$\begin{bmatrix} \hat{l} & \hat{l} \end{bmatrix} - i\hbar \hat{l}$					
$\langle f f\rangle = 1$	$\begin{bmatrix} \mathbf{L}_{\chi}, \mathbf{L}_{y} \end{bmatrix} = i\hbar\mathbf{L}_{z}$ $\begin{bmatrix} \hat{\mathbf{L}} & \hat{\mathbf{L}} \end{bmatrix} = i\hbar\hat{\mathbf{L}}$	$\begin{bmatrix} S_x, S_y \end{bmatrix} = \ln S_z$				
$\langle f q \rangle = 0$	$\begin{bmatrix} \mathbf{L}_{y}, \mathbf{L}_{z} \end{bmatrix} = i\hbar\mathbf{L}_{x}$ $\begin{bmatrix} \hat{\mathbf{l}} & \hat{\mathbf{l}} \end{bmatrix} = i\hbar\hat{\mathbf{l}}$	$\begin{bmatrix} S_y, S_z \end{bmatrix} = \ln S_x$				
$f_n f_n \rangle = 1$	$[\mathbf{L}_{z},\mathbf{L}_{x}] = in\mathbf{L}_{y}$	$[S_z, S_x] = inS_y$				
$ f_n\rangle = \delta_{mn}$						
per function	Proba	bility				
sed as	X is a rando	om variable				
$c_n = \langle f_n a \rangle$	if X is discrete	if X is continuous				
e as taking	$\langle X \rangle = \sum_{n=1}^{\infty} x_n p_X(x_n)$	$\langle X \rangle = \int_{-\infty}^{\infty} x f_X(x) dx$				
omplex	$\langle X^2 \rangle = \Sigma_{n=1}^{\infty} x_n^2 p_X(x_n)$	$\langle X^2 \rangle = \int_{-\infty}^{\infty} x^2 f_X(x) dx$				
use sums	$\Pr(a \le x \le b)$	$\Pr(a \le x \le b)$				
	$= \sum_{a \le x_n \le b} p_X(x_n)$	$= \int_{a}^{b} f_{X}(x) dx$				
4	$V[X] = \langle X$	$\langle X^2 \rangle - \langle X \rangle^2$				
tion	$\sigma_X = \sqrt{V[X]} =$	$\sqrt{\langle X^2 \rangle - \langle X \rangle^2}$				
\widehat{Q} , and q is	$p_{\mathbf{x}}(\mathbf{x})$ is the probability r	nass function (PMF) of X.				
envalue.	$f_{x}(x)$ is the probability density function (PDF) of X.					
	$\langle X \rangle$ is the expectation value of X,					
ator	$V[X]$ is the variance , and σ	σ_X the standard deviation.				
envalues						
asurements	Operator identiti	es and properties				
	$\langle a \widehat{A}^{\dagger} b\rangle = \langle b \widehat{A} a\rangle^{*}$	$\widehat{A} a\rangle = \langle a \widehat{A}^{\dagger}$				
tiom"	$\left(\widehat{A}^{\dagger}\right)^{\dagger} = \widehat{A} \left(\alpha \widehat{A}\right)^{\dagger} = \widehat{A}$	$\alpha^* \widehat{A}^{\dagger} \qquad \left(\widehat{A} \ \widehat{B}\right)^{\dagger} = \widehat{B}^{\dagger} \widehat{A}^{\dagger}$				

The **commutator** of two operators \widehat{A} and \widehat{B} is

observable eaning any ressed as a

of Q.M. system and the wave function

f(t) is a vector in \mathcal{H} , and can be expressed in different bases of ns. The basis we almost always use is that of position:

 $\widehat{C} = \widehat{A} + \widehat{B}$

 $\Rightarrow \hat{C}|\Psi\rangle = \hat{A}|\Psi\rangle + \hat{B}|\Psi\rangle$

 $\hat{C} = \hat{A} \hat{B} \Rightarrow \hat{C} |\Psi\rangle = \hat{A} (\hat{B} |\Psi\rangle)$

$$\Psi(\mathbf{r},t) = \langle \mathbf{r} | \Psi(t)$$

where $|\mathbf{r}\rangle$ is the eigenfunction of $\hat{\mathbf{r}}$, with eigenvalue \mathbf{r} , and $\Psi(\mathbf{r}, t)$ is the **wave function**.

2/10 WAVE FUNCTIONS

The **wave function** Ψ is the solution to the TDSE. It is the probability amplitude function of the system. We can derive the probability distribution of various observables from Ψ .

TDSE (Time dep. Schrödinger Equation) $\widehat{H}\Psi = \widehat{E}\Psi$ which when written out becomes $-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi = i\hbar\frac{\partial}{\partial t}\Psi$ with $\Psi = \Psi(\mathbf{r}, t)$, and $V = V(\mathbf{r}, t)$

TISE (*Time indep. Schrödinger Equation*) If the *potential* is <u>not a function of time</u>, one can use **separation of variables** on Ψ : $\Psi(\mathbf{r}, t) = \psi(\mathbf{r})\phi(t)$

which, when put in the Schrödinger Equation, leads to the TISE:

 $-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi \text{ same as: } \widehat{H}\Psi = E\Psi$ and $\phi(t) = \exp(-iEt/\hbar)$

General solution to TDSE (discrete sum) <u>Given V indep. of time</u>, the general solution Ψ is a linear combination of separable solutions { ψ_n }

$$\Psi(\mathbf{r},t) = \sum_{n=1}^{\infty} c_n \psi_n(\mathbf{r}) e^{-iE_n t/\hbar}$$

where $|c_n|^2$ is the *probability* that the measured energy is E_n , thus $\Sigma_n |c_n|^2 = 1$

Finding c_n Given initial wave function $\Psi(\mathbf{r}, 0) = \sum_{n=1}^{\infty} c_n \psi_n(\mathbf{r})$ using Fourier's trick, we get $c_n = \int_{\mathbb{R}^3} \psi_n^*(\mathbf{r}) \Psi(\mathbf{r}, 0) d\mathbf{r}$

that the measured $|c_n|^2 = 1$ Bound state $E < V(\pm \infty)$ Unbound state $E > V(\pm \infty)$ In real life, most V are 0 at $\pm \infty$

Requirements of Ψ Ψ must be continuous and have a continuous derivative. Ψ must be square-integrable. The cumulative probability of Ψ must be 1 on its domain (normalized): $\langle \Psi(t)|\Psi(t)\rangle = \int_{\mathbb{D}^3} |\Psi(\mathbf{r},t)|^2 d\mathbf{r} = 1$ If discrete: $\langle \Psi(t) | \Psi(t) \rangle = \sum_n |c_n|^2 = 1$ **Properties of** $\{\psi_n\}$ The infinite set of solutions to TISE $\{\psi_n\}$ has certain properties: **1.** If V is symmetric, then the solutions are alternately **even** and **odd** with respect to the center of the well; ψ_1 is even, ψ_2 is odd and so on... **2.** As you go up in energy, each successive state has one more **zero crossing**; ψ_1 has none, ψ_2 has one, ... 3. They are mutually orthogonal: $\int_{\mathbb{R}^3} \psi_m^* \psi_n d\mathbf{r} = \delta_{mn}$ 4. The set is **complete**, meaning any other function f can be expressed as a linear combination of $\{\psi_n\}$: $f(\mathbf{r}) = \sum_{n=1}^{\infty} c_n \psi_n(\mathbf{r})$ Using the completeness and orthogonality of $\{\psi_n\}$ we have $c_n = \int_{\mathbb{R}^3} \psi_n^*(\mathbf{r}) f(\mathbf{r}) d\mathbf{r}$ Sometimes called "Fourier's trick" Stationary state (separable solution) State where all observables are indep. of time. This occurs when the **probability density** $|\Psi(\mathbf{r}, t)|^2$ is indep. of time.

Eigenstates/Eigenfunctions and Eigenvalues

When a observable Q is measured, then the system "collapses" from being in a discrete or continuous superposition of eigenstates/eigenfunctions to ONE eigenstate/eigenfunction. The result of the measurement is the eigenvalue related to that eigenstate/eigenfunction. Eigenstates/eigenfunctions and eigenvalues for a observable Q are found using the eigenvalue equation $\widehat{Q}\Psi = q\Psi$

 $(e^{i\varphi})^* = e^{-i\varphi}$

 $\Psi = re^{i\varphi} \Rightarrow |\Psi|^2 = r^2$

SOLUTIONS 3/10

Infinite square well (1D) $V(x) = \begin{cases} 0, & x \in [0, L] \\ \infty, & \text{otherwise} \end{cases}$ **TISE** becomes: $\frac{d^2\psi}{dx^2} = -k^2\psi, \qquad k \equiv \frac{\sqrt{2mE}}{\hbar}$ General solution to this is: $\psi(x) = A\sin kx + B\cos kx$ Since ψ must be 0 outside the well, continuity of ψ means: $\psi(0) = \psi(a) = 0$ $\Rightarrow B = 0 \text{ and } k = \frac{n\pi}{L}, n \in \mathbb{Z}_+$ Solving $\frac{n\pi}{L} = \frac{\sqrt{2mE}}{\hbar}$ gives $E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\pi^2 \hbar^2}{2mL^2} n^2$ A can be found by normalizing ψ $|A|^2 = 2/L \Rightarrow A = \sqrt{2/L}$ $\therefore \ \psi_n(x) = \sqrt{2/L} \sin\left(\frac{n\pi}{L}x\right)$ Ladder operators $\hat{a}_{\pm} \equiv \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega\hat{x})$ The Hamiltonian can be $\widehat{H} = \hbar\omega \left(\widehat{a}_{+}\widehat{a}_{-} + \frac{1}{2} \right) = \hbar\omega$

 $\hat{a}_{-}\psi_{n} = \sqrt{n}\psi_{n-1}$

The Hamiltonian can be written as

$$\hat{H} = \hbar \omega \left(\hat{a}_{+} \hat{a}_{-} + \frac{1}{2} \right) = \hbar \omega \left(\hat{a}_{-} \hat{a}_{+} - \frac{1}{2} \right)$$

$$[\hat{a}_{+} \hat{a}_{-}] = -1 \qquad [\hat{a}_{-} \hat{a}_{+}] = 1$$

$$\underline{Fxact actions of ladder operators:} \\ \hat{a}_{+} \psi_{n} = \sqrt{n+1} \psi_{n+1}$$

$$\hat{a}_{-} \psi_{n} = \sqrt{n} \psi_{n-1}$$
Eigenvalue equations:

$$\hat{H} (\hat{a}_{-} \psi_{n}) = (E_{n} - \hbar \omega)(\hat{a}_{-} \psi_{n})$$

$$\hat{H} (\hat{a}_{+} \psi_{n}) = (E_{n} + \hbar \omega)(\hat{a}_{+} \psi_{n})$$

$$Dirac delta function \\ \delta(x) = \begin{cases} 0, x \neq 0 \\ 1, x = 0 \end{cases} \text{ and } \int_{-\infty}^{\infty} \delta(x) \\ \beta_{mn} = \begin{cases} 0, m \neq n \\ 1, m = n \end{cases}$$

$$dirac - orthon \\ \delta_{mn} = \begin{cases} 0, m \neq n \\ 1, m = n \end{cases}$$

eigenstates

state,

O

 $\psi_n($

Free particle (1D)
$$V(x) = \frac{1}{2}kx^2 = \frac{1}{2}ma^2x^2$$
 where $a^2 = k/m$ Write TISE using the Hamiltonian expressed with
the ladder operators:
 $ha(a, a, +\frac{1}{2})\psi = E\psi$ $V(x) = 0$ TISE becomes:
 $\frac{d^2\psi}{dx^2} = -k^2\psi$, $k = \frac{\sqrt{2mE}}{h}$ General solution to this is
 $\frac{d^2x}{dx^2} = k^2\psi$, $k = \frac{\sqrt{2mE}}{h}$ General solution to this is
 $\frac{d^2x}{dx^2} = k^2\psi$, $k = \frac{\sqrt{2mE}}{h}$ General solution to TDSE is still a lin.
como, of separable solutions though,
but it's an integral now, not a sum: $\psi_{\alpha} = (\frac{m\omega}{mh})^{1/4} \exp(-\frac{m\omega}{2h}x^2)$ Which when plugged into TISE gives:
 $k_0 = \frac{1}{2}h\omega$ $\psi(x, t) = Ae^{i(k-\frac{K}{2m})} + Be^{-ik(x+\frac{K}{2m})}$ General solution to TDSE is still a lin.
com, of separable solutions though,
but it's an integral now, not a sum: $\psi_{\alpha} = (\frac{m\omega}{mh})^{1/4} \exp(-\frac{m\omega}{2h}x^2)$ $\psi(x, t) = Ae^{i(k-\frac{K}{2m})} + Be^{-ik(x+\frac{K}{2m})}$ Here the product $1/\sqrt{2\pi} f(k)dt$ take
the role of c_n . One can line of $f(k)$ by
 $\psi(x, t) = Ae^{i(k-\frac{K}{2m})}$ Here the product $1/\sqrt{2\pi} f(k)dt$ take
the role of c_n . One can line $f(k)$ by
 $\psi(x) = A = i(x+\frac{K}{2m})$ We say that ψ carries a range of k and
energy values. Calling it a wave packet. $\psi_{\alpha}(x) = A_{\alpha}(n, \frac{1}{2})^{1/4}$ $\psi(x) = Ae^{i(x-\frac{K}{2m})}$ $W(x, t) = Ae^{i(x-\frac{K}{2m})}$ Harmonic Oscillator (3D) $\psi(x, t) = Ae^{i(x-\frac{K}{2m})}$ $\psi(x, t) = Ae^{i(x-\frac{K}{2m})}$ $W(x, t) = Ae^{i(x-\frac{K}{2m})}$ $W(x, t) = Ae^{i(x-\frac{K}{2m})}$ $\psi_{\alpha}(x) = A_{\alpha}(n, \frac{1}{2})^{1/4}$ $W(x) = Ae^{i(x-\frac{K}{2m})}$ Here the product $1/\sqrt{2\pi} f(k)dt$ take
the role of c_n . One can line $f(k)$ by
 $\psi(x) = Ae^{i(x-\frac{K}{2m})}$ Here the product $1/\sqrt{2\pi} f(k)dt$ One can use the exact

5/10 OPERATOR MATRICIES and VECTOR REPRESENTATION

Wavefunction as a column vector

The wavefunction $\Psi(\mathbf{r}, t)$ is the same as a column-vector $|\Psi(t)\rangle$ in $\mathcal H$ in the position basis

$$\Psi(t)\rangle = \int_{\mathbb{R}^3} \Psi(\mathbf{r},t) |\mathbf{r}\rangle d$$

Where $\{|r\rangle\}$ is the position basis spanning $\mathcal{H}.$

$$\Psi(t)\rangle = \sum_{n=1}^{\infty} c_n(t) |E_n\rangle$$

Where $\{|E_n\rangle\}$ is the energy basis spanning \mathcal{H} .

Visualizing function as a column vector

This is not completely mathematically rigorous, but gives an idea of how a function can be represented as a vector

$$\Psi(x,t) \text{ represented as} \begin{pmatrix} \vdots \\ \Psi(-2\epsilon,t) \\ \Psi(-\epsilon,t) \\ \Psi(0,t) \\ \Psi(0,t) \\ \Psi(\epsilon,t) \\ \Psi(2\epsilon,t) \\ \vdots \end{pmatrix} \text{ where } \epsilon \to 0$$

In other words, you can think of the ket $|\Psi(t)\rangle$ as holding all possible values of Ψ through time, and which can be represented in a certain basis.

Operator as matrix

An operator $\widehat{\mathbb{Q}}$ acting on a wave function $\Psi(x,t)$, is the same as that operator's matrix representation \mathbf{Q} *(in the position basis in this case*), acting on the vector $|\Psi(t)\rangle$

Common eigenfunctions

 $[\widehat{A}, \widehat{B}] = 0 \Leftrightarrow$ they have common eigenfunctions:

 $\widehat{A}f_n = a_n f_n$ $\widehat{B}f_n = b_n f_n$

Ladder operator matrices (H.O.) $\hat{a}_{+}|n\rangle = \sqrt{n+1} |n+1\rangle \Rightarrow \langle m|\hat{a}_{+}|n\rangle = \sqrt{n+1} \delta_{m,n+1}$ $\Rightarrow \hat{a}_{+} \rightarrow \mathbf{a}_{+} = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ \sqrt{1} & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \cdots \\ 0 & 0 & \sqrt{3} & \cdots \\ \vdots & \ddots & \vdots & \ddots \end{pmatrix}$ $\hat{a}_{n}|n\rangle = \sqrt{n} |n-1\rangle \Rightarrow \langle m|\hat{a}_{n}|n\rangle = \sqrt{n} \,\delta_{m\,n-1}$ $\Rightarrow \hat{\mathbf{a}}_{-} \rightarrow \mathbf{a}_{-} = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{2} & 0 & \cdots \\ 0 & 0 & 0 & \sqrt{3} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$ Where the basis $\{|n\rangle\}$ is such that $|1\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |2\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |3\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \text{ etc.}$ and $\langle m | = |n\rangle^{\dagger} \Rightarrow \langle m | n \rangle = \delta_{mn}$ Hamiltonian operator matrix (H.O.)
$$\begin{split} \widehat{\mathbf{H}} &= \hbar\omega \left(\widehat{\mathbf{a}}_{+} \widehat{\mathbf{a}}_{-} + \frac{1}{2} \right) \Rightarrow \ \mathbf{H} = \langle m | \hbar\omega \left(\widehat{\mathbf{a}}_{+} \widehat{\mathbf{a}}_{-} + \frac{1}{2} \right) | n \rangle \\ &\Rightarrow \widehat{\mathbf{H}} \rightarrow \mathbf{H} = \hbar\omega \begin{pmatrix} 1/2 & 0 & 0 & \cdots \\ 0 & 3/2 & 0 & \cdots \\ 0 & 0 & 5/2 & \cdots \end{pmatrix} \end{split}$$

The eigenvalues of a diagonal matrix are the values along the diagonal, which in this case we see matches the eigen energies for the 1D H.O.

Of course, using the same basis $\{|n\}$ as above

Four ways to attack a Q.M problem

- 1. Choose a space, like the position space $(\Psi(\mathbf{r}, t) = \langle \mathbf{r} | \Psi(t) \rangle)$, and solve TDSE
- 2. Define operators which allow to take or add energy (such as the ladder operators in H.O.)
- 3. Chose basis vectors, and compute the eigenvalues of the **H** matrix (Hamiltonian matrix)
- 4. Use an approximation method.

	UNCERTAINTY					
σ_Q^2	Variance = $\langle Q^2 \rangle - \langle Q \rangle^2 = \left\langle \left(\widehat{Q} - \langle Q \rangle \right)^2 \right\rangle$	Standard deviation $\sigma_Q = \sqrt{\langle Q^2 \rangle - \langle Q \rangle^2}$				
	$\begin{aligned} \mathbf{\hat{b}eneralized uncertainty} \\ \mathbf{principle} \\ \sigma_{A}\sigma_{B} \geq 1/2 \cdot \langle \Psi [\widehat{A}, \widehat{B}] \Psi \rangle \end{aligned}$	The uncertainty principle $\sigma_x \sigma_p \ge \hbar/2$				
Δt Q te	Energy-time uncertainty principle $\Delta E \Delta t \geq \hbar/2$ Where $\Delta E \equiv \sigma_H$ and $\Delta t \equiv \sigma_Q / \left \frac{d}{dt} \langle Q \rangle \right $. Δt represents the amount of time it takes the expectation value of Q to change by one standard deviation. <i>There is no time operator.</i>					
Ger di	Generalized Ehrenfest theoremIf $[\widehat{H}, \widehat{Q}] = 0$ and $\frac{d}{dt}\langle Q \rangle = \frac{i}{\hbar} \langle \Psi [\widehat{H}, \widehat{Q}] \Psi \rangle + \langle \frac{\partial \widehat{Q}}{\partial t} \rangle$ $\langle \partial \widehat{Q} / \partial t \rangle = 0$, then $\langle Q \rangle$ is constant, i.e. conserved.					
	Results from Ehrenfest theorem $\langle p \rangle = m \frac{d}{dt} \langle x \rangle \frac{d}{dt} \langle p \rangle = -\left(\frac{dV}{dx}\right)$ Note that $\left(\frac{dV}{dx}\right) \neq \frac{d}{dt} \langle V \rangle$					
For	Minimum uncertainty $\sigma_x \sigma_p = \hbar/2$ For the one-dimensional Harmonic Oscillator, this happens at the ground state.					
E o	Consequence of the uncertainty principle in 1D For all 1D systems, we have $E_g > -V_0$. Meaning the ground state energy is always greater than the minimum potential. This is a consequence of the uncertainty principle.					
e	nergy is always greater than the n consequence of the unce	ninimum potential. This is a ertainty principle.				
e	nergy is always greater than the n consequence of the unce Ground state For an arbitrary <i>normalize</i> $E_g \leq \langle \Psi \hat{H} \Psi \rangle$ where E_g is the groun	ninimum potential. This is a ertainty principle. ed state Ψ , we have $\Psi = \langle H \rangle$ d state energy.				

6/10 ANGULAR MOMENTUM

Angular momentum operators $\hat{\mathbf{L}}_x = y\hat{\mathbf{p}}_z - z\hat{\mathbf{p}}_y$ $\hat{\mathbf{L}}_y = z\hat{\mathbf{p}}_x - x\hat{\mathbf{p}}_z$ $\hat{\mathbf{L}}_z = x\hat{\mathbf{p}}_y - y\hat{\mathbf{p}}_x$ $\hat{\mathbf{L}}^2 = \hat{\mathbf{L}}_x^2 + \hat{\mathbf{L}}_y^2 + \hat{\mathbf{L}}_z^2$

Angular momentum operators (spherical) $\hat{L}_{x} = -i\hbar \left[-\sin(\phi) \frac{\partial}{\partial \theta} - \cos(\phi) \cos(\theta) \frac{\partial}{\partial \phi} \right]$ $\hat{L}_{y} = -i\hbar \left[\cos(\phi) \frac{\partial}{\partial \theta} - \sin(\phi) \cos(\theta) \frac{\partial}{\partial \phi} \right]$ $\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \phi}$

Hamiltonian using angular momentum $\widehat{H} = \frac{1}{2mr^2} \left[-\hbar^2 \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + L^2 \right] + V$

Angular momentum commutators $[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$ $[\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x$ $[\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y$ $[\hat{L}^2, \hat{L}_k] = 0$ for k = x, y, zGenerally: $[\hat{L}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} \hat{L}_k$

Angular momentum uncertainty $\sigma_{L_i}\sigma_{L_j} \ge \frac{\hbar}{2} |\langle L_k \rangle| |\varepsilon_{ijk}|$

i.e., if for example L_z is well known, then L_x and L_y are not.

Angular momentum ladder operator $\hat{\mathbf{L}}_{\pm} = \hat{\mathbf{L}}_x \pm i \hat{\mathbf{L}}_y$

A useful relation:
$$\hat{\mathrm{L}}_{\pm}\hat{\mathrm{L}}_{\mp}=\hat{\mathrm{L}}^2-\hat{\mathrm{L}}_z^2\pm\hbar\hat{\mathrm{L}}_z$$

Angular momentum eigen equations

Using angular momentum ladder operator, one can show

 $\hat{\mathbf{L}}^2 f_{\ell}^m = \hbar^2 \ell (\ell + 1) f_{\ell}^m \quad \text{and} \quad \hat{\mathbf{L}}_z f_{\ell}^m = \hbar m f_{\ell}^m$

Where the eigen function f_{ℓ}^{m} happens to be the spherical harmonics Y_{ℓ}^{m} . Some also represent f_{ℓ}^{m} as $|\ell m\rangle$.

Three-dimension Levi-Civita symbol (-1 if (i, j, k) is (z, y, x), (x, z, y), or (y, x, z)) $\varepsilon_{iik} = \begin{cases} 0 & \text{if } i = j \text{ or } j = k \text{ or } k = i \end{cases}$ (1 if (i, j, k) is (x, y, z), (y, z, x), or (z, x, y))**Pauli matrices** $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Hamiltonian in mag. field. using spin For particle in uniform field magnetic field $\mathbf{B} = B_0 \mathbf{e}_z$ $\widehat{\mathbf{H}} = -\gamma B_0 \widehat{\mathbf{S}}_z = -\alpha_0 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ where $\alpha_0 = \gamma B_0 \hbar/2$ Spin expectation value State of a particle expressed with spin $|\Psi(t)\rangle = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-iE_{\uparrow}t/\hbar} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-iE_{\downarrow}t/\hbar}$ where $E_{\uparrow} = -\alpha_0 = -\gamma B_0 \hbar/2$ and $E_{\perp} = \alpha_0 = \gamma B_0 \hbar/2$ This state can be written as a spinor $|\Psi(t)\rangle = \begin{pmatrix} ae^{i\gamma B_0 t/2} \\ be^{-i\gamma B_0 t/2} \end{pmatrix}$ $\Rightarrow \langle \Psi(t) | = (a^* e^{-i\gamma B_0 t/2} \quad b^* e^{i\gamma B_0 t/2})$ Which can be used to find the expectation value: $\langle S_k \rangle = \langle \Psi(t) | \hat{S}_k | \Psi(t) \rangle = \frac{n}{2} \langle \Psi(t) | \sigma_k | \Psi(t) \rangle$ For S_z it becomes: $\langle S_z \rangle = \frac{\hbar}{2} (a^* a - b^* b) = \frac{\hbar}{2} \cos(\lambda)$ $\langle S_z
angle$ For S_{γ} it becomes: $\langle S_x \rangle = \frac{\hbar}{2} (a^* b e^{-i\gamma B_0 t} + b^* a e^{i\gamma B_0 t})$

SPIN

Spin

An *intrinsic* angular momentum carried by elementary particles; somewhat analogous to classical spin.

Spin 1/2 Particles with s = 1/2. There are only two spin eigenstates: $\underline{\text{Spin up:}} |\uparrow\rangle = |s \ m_s\rangle = \left|\frac{1}{2} \ \frac{1}{2}\right\rangle$ $\underline{\text{Spin down:}} |\downarrow\rangle = |s \ m_s\rangle = \left|\frac{1}{2} \ \left(-\frac{1}{2}\right)\right\rangle$

Spin-1/2 operators

$$\hat{\mathbf{S}} = \frac{\hbar}{2}\boldsymbol{\sigma}$$

 $(\sigma = \text{vector whose components are the$ **Pauli matrices**)

	Spin commutators	
$\left[\hat{\mathbf{S}}_{x},\hat{\mathbf{S}}_{y}\right]=i\hbar\hat{\mathbf{S}}_{z}$	$\left[\hat{S}_{y},\hat{S}_{z}\right]=i\hbar\hat{S}_{x}$	$\left[S_z, \hat{S}_x\right] = i\hbar \hat{S}_y$

NB: Same relations as with angular momentum operators!

Spinors for spin-1/2 particles A particles general state can be represented by a 2 × 1 matrix called a spinor: $|\psi\rangle = {a \choose b} = a {1 \choose 0} + b {0 \choose 1}$ where ${1 \choose 0}$ representing spin up (1) and ${0 \choose 1}$ representing spin down (\downarrow)

Spin ladder operator $\hat{S}_{\pm} = \hat{S}_x \pm i\hat{S}_y$ $\hat{S}_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\hat{S}_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ \leftarrow acts on spinors

Spin eigen equations Using the spin ladder operator, one can show $\hat{S}^2 | s m_s \rangle = \hbar^2 s(s+1) | s m_s \rangle \& \hat{S}_z | s m_s \rangle = \hbar m_s | s m_s \rangle$ Unlike ang. mom., $| s m_s \rangle$ is not the spherical harmonics, thus no need to omit half-integers *s* and *m_s* values: $s = 0, \frac{1}{2}, 1, \frac{3}{2}, ... \qquad m_s = -s, -s + 1, ..., s - 1, s$

7/10 TOTAL ANGULAR MOMENTUM

Total angular momentum operators $\hat{J}_k = \hat{L}_k + \hat{S}_k, \ k = x, y, z$

Total angular momentum commutators $[\hat{J}_x, \hat{J}_y] = i\hbar \hat{J}_z$ $[\hat{J}_y, \hat{J}_z] = i\hbar \hat{J}_x$ $[\hat{J}_z, \hat{J}_x] = i\hbar \hat{J}_y$ NB: Same relations as with angular momentum operators!Total angular momentum ladder operator $\hat{J}_{\pm} = \hat{J}_x \pm i \hat{J}_y$ $\hat{J}_{\pm} |j m_j\rangle = \hbar \sqrt{j(j+1) - m_j(m_j \pm 1)} |j (m_j \pm 1)\rangle$ Total angular momentum eigen equations $\hat{J}^2 |j m_j\rangle = \hbar^2 j(j+1) |j m_j\rangle$ and $\hat{J}_z |j m_j\rangle = \hbar m_j |j m_j\rangle$ $|\ell - s| \le j \le \ell + s$

Total angular momentum operator matrices

 $\hat{J}_{x} = \frac{1}{2}(\hat{J}_{+} + \hat{J}_{-})$ $\hat{J}_{y} = \frac{1}{2i}(\hat{J}_{+} - \hat{J}_{-})$ $\hat{J}_{z} = \hbar \begin{pmatrix} j & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & -j \end{pmatrix}$

A matrix with zero everywhere except along the diagonal, where it starts at j and moves down with integer steps to -j

QUANTUM NUMBERS

	Name	Range	Usage
п	Principle	[1,∞)	E_n
ł	Azimuthal	[0, n - 1]	$L = \sqrt{\ell(\ell+1)}\hbar$
т	Magnetic	$[-\ell,\ell]$	$L_z = m\hbar$
S	Spin	Int. and Half-int.	$S = \sqrt{s(s+1)}\hbar$
m_s	Spin magnetic	[-s,s]	$S_z = m_s \hbar$
j	Tot. ang. moment.	$[\ell - s , \ell + s]$	$J = \sqrt{j(j+1)}\hbar$
m _j	Tot. ang. moment. proj.	[-j,j]	$J_z = m_j \hbar$

All having integer steps within their range

TWO PARTICLES and TOTAL SPIN

Addition of spin angular momentum

Particle 1 has spin s_1 and m_1 , represented by the eigenstate $|s_1 m_1\rangle$, likewise for a second particle in eigenstate $|s_2 m_2\rangle$. The composite state is denoted by $|s_1 s_2 m_1 m_2\rangle$. The eigenequations become:

$$\begin{split} \hat{S}_{1}^{2} |s_{1} s_{2} m_{1} m_{2}\rangle &= s_{1}(s_{1}+1)\hbar^{2} |s_{1} s_{2} m_{1} m_{2}\rangle \\ \hat{S}_{2}^{2} |s_{1} s_{2} m_{1} m_{2}\rangle &= s_{2}(s_{2}+1)\hbar^{2} |s_{1} s_{2} m_{1} m_{2}\rangle \\ \hat{S}_{1_{z}} |s_{1} s_{2} m_{1} m_{2}\rangle &= m_{1}\hbar |s_{1} s_{2} m_{1} m_{2}\rangle \\ \hat{S}_{2_{z}} |s_{1} s_{2} m_{1} m_{2}\rangle &= m_{2}\hbar |s_{1} s_{2} m_{1} m_{2}\rangle \end{split}$$

What is the total spin angular momentum? $\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2$ Same as asking: what is the net spin *s*, and what is the *z* component m_s ?

The value of m_s is trivial $\hat{S}_z | s_1 s_2 m_1 m_2 \rangle = (\hat{S}_{1z} + \hat{S}_{2z}) | s_1 s_2 m_1 m_2 \rangle$ $\Rightarrow \hbar m = \hbar (m_1 + m_2)$ $m_z = m_z + m_z$

 $m_s=m_1+m_2$

Regarding the net spin s, the answer is that you get every spin from $s_1 + s_2$, down to $s_1 - s_2$ in integer steps (assuming $s_1 > s_2$):

 $s = (s_1 + s_2), (s_1 + s_2 - 1), (s_1 + s_2 - 2) \dots, (s_1 - s_2)$

Highest spin when they are parallel, lowest and antiparallel.

Two spin-1/2 particles

Consider a system with two spin-1/2 particles *(e.g. proton and electron in Hydrogen ground state).* Measured on a given axis (usually the *z*-axzs), each particle can be either spin up ↑, or spin down ↓, giving us four basis states:

 $|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle,$

 $|\uparrow\uparrow\rangle$ and $|\downarrow\downarrow\rangle$ are aligned in *z*-direction $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$ is aligned in *x* or *y* direction

Total spin here is s = 1 when aligned, thus:

(triplet state)
$$s = 1 \begin{cases} |\uparrow\uparrow\rangle \\ \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \\ |\downarrow\downarrow\rangle \end{cases}$$

 $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$ is not aligned in any direction, this s = 0

(singlet state)
$$s = 0 \left\{ \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right\}$$

Bosons (e.g. gluon and photon) have integer spins

Fermions (e.g. quarks, muons, electron, neutrino) have half-integer spin

Two particle system (no interaction)

 $\psi(1,2) = \psi_a(1)\psi_b(2)$

Where 1, 2 represent all coordinates, spin, etc. of particle 1 and 2 respectively. The indexes *a* and *b* represent states.

If a = b then $\psi(1,2) = \psi(2,1)$ else $\psi(1,2) \neq \psi(2,1)$

Bosons: $\psi_B(1,2) = \frac{1}{\sqrt{2}} [\psi_a(1)\psi_b(2) + \psi_a(2)\psi_b(1)]$ Fermions: $\psi_F(1,2) = \frac{1}{\sqrt{2}} [\psi_a(1)\psi_b(2) - \psi_a(2)\psi_b(1)]$ If a = b then $\psi_F(1,2) = 0 \Rightarrow$ Two fermions cannot be in

the same state (**Pauli exclusion principle**)

8/10

PERTURBATION THEORY

Nondegenerate Perturbation (time indep.) Suppose the TISE cannot be solved exactly $\widehat{H}|\psi_n\rangle = E_n|\psi_n\rangle$

To approximate a solution rewrite \hat{H} so the TISE becomes $(\widehat{H}_0 + \widehat{H}_1)|\psi_n\rangle = E_n|\psi_n\rangle$

where \widehat{H}_1 is a small disturbance/perturbation, and $\widehat{H}_0 |\phi_n^0\rangle = \varepsilon_n^0 |\phi_n^0\rangle$

has known analytical solutions ε_n^0 and ϕ_n^0 . Where there is no degeneracy.

A 1st order approximation of the wave function and the energy can be expressed as:

$$\begin{split} |\psi_n\rangle \simeq |\phi_n^0\rangle + \sum_{m\neq n} \frac{\langle \phi_m^0 |\widehat{\mathbf{H}}_1| \phi_n^0\rangle}{\varepsilon_n^0 - \varepsilon_m^0} |\phi_m^0\rangle \\ E_n \simeq \varepsilon_n^0 + \langle \phi_n^0 |\widehat{\mathbf{H}}_1| \phi_n^0\rangle \end{split}$$

Note! \hat{H}_1 should be relatively small, i.e., $\left|\langle \phi_m^0 | \widehat{H}_1 | \phi_n^0 \rangle\right| \ll |\varepsilon_n^0 - \varepsilon_m^0|$

Time-Dependent Perturbation Theory

Consider a Hamiltonian consisting of a time-independent part \hat{H}_0 and time dependent part V(t):

 $\widehat{\mathbf{H}} = \widehat{\mathbf{H}}(t) = \widehat{\mathbf{H}}_0 + V(t)$

where V(t) is a disturbance/perturbation. A solution to TDSE can be written as

$$|\Psi(t)\rangle = \Sigma_n c_n(t) |\psi_n\rangle e^{-iE_nt/\hbar}$$

where $|\psi_n\rangle$ and E_n are known solutions to the TISE with \widehat{H}_0 . We need to find $\{c_n(t)\}$, which follow the equations

$$i\hbar \dot{c}_m = \sum_n c_n V_{nm} e^{i\omega_{mn}t}, \quad m = 1,2,3, \dots$$

where $\dot{c}_m = \frac{d}{dt} c_m$, $V_{nm} = \langle \psi_m | V | \psi_n \rangle$, and $\omega_{mn} = \frac{E_m - E_n}{\hbar}$.

Suppose the disturbance V(t) is weak, such that the coefficients $c_n(t)$ vary vert slowly with time, meaning

$$c_m(t) \simeq c_m(t_0) + \frac{1}{i\hbar} \sum_n c_n(t_0) \int_{t_0}^t V_{mn}(t') e^{i\omega_{mn}t'} dt'$$

^ First order general time-dependent perturbation

If ε_n^0 of \widehat{H}_0 has degeneracy g; then there exists g orthonormal solutions X_i^0 , i = 1, 2, 3, ..., g of the equation

 $\widehat{H}_0 X_i^0 = \varepsilon_n^0 X_i^0$

Thus, by linear algebra, we can write

$$\phi_n^0 = \sum_{i=1}^g c_i X_i^0$$

Where $\{c_i\}$ are found by the *g*-number of equations

$$\sum_{i=1}^{g} (H_{ji} - \varepsilon_n^1 \delta_{ji}) c_i = 0, \quad j = 1, 2, 3, \dots g$$

where $H_{ji} = \langle X_j^0 | \widehat{H}_1 | X_i^0 \rangle$ and $\varepsilon_n^1 = \langle \phi_n^0 | \widehat{H}_1 | \phi_n^0 \rangle$
The approximations become
$$|\psi_n \rangle \simeq \phi_n^0 = \sum_{i=1}^{g} c_i X_i^0$$
$$E_n \simeq \varepsilon_n^0 + \varepsilon_n^1$$

Note! If
$$H_{ji} = H_{ji}\delta_{ij}$$
 then $\varepsilon_n^1 = \varepsilon_i^1 = \langle X_i^0 | \widehat{H}_1 | X_i^0 \rangle$
 $i = 1, 2, 3, ..., g$

If the

e system is in one of its eigenstates
$$|\psi_n\rangle$$
 of \hat{H}_0 at time $t = t_0$, we have a **special first order result**:

$$c_m(t) \simeq \delta_{nm} + \frac{1}{i\hbar} \int_{t_0}^t V_{mn}(t') e^{i\omega_{mn}t'} dt'$$

The **transition amplitude** $c_f(t)$ from initial state $|\psi_i\rangle$ with energy E_i to a final state $|\psi_f\rangle$ with energy E_f we have

$$c_f(t) \simeq \frac{1}{i\hbar} \int_{t_0}^t V_{fi}(t') e^{i\omega_{fi}t'} dt'$$
 assuming $f \neq$

Transition probability from state *i* to *f* is given by

$$P_{i \to f}(t) = |c_f(t)|^2$$
Harmonic Perturbations
Let $V(t) = V_0(\mathbf{r}) \cos(\omega t)$ Note $\omega \neq \omega_{fi}$
 $C_{\text{emission}}(t) \simeq \frac{1}{2} \langle \psi_f | V_0 | \psi_i \rangle \frac{1 - e^{i(\omega_{fi} + \omega)t}}{E_f - E_i + \hbar\omega}$ if $E_f < E_i$
absorption $(t) \simeq \frac{1}{2} \langle \psi_f | V_0 | \psi_i \rangle \frac{1 - e^{i(\omega_{fi} - \omega)t}}{E_f - E_i - \hbar\omega}$ if $E_f > E_i$

Density of states (DOS)

Number of allowed states per energy

$$(E) = \frac{d}{dE}N(E)$$

Density of states for Fermions

For Fermions with mass *m*:

ρ(

 $\Psi_0(\mathbf{r}_1)$

$$E) = V_0 2\pi \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$$

where V_0 is a general "normalization volume", i.e., the box volume where all wavefunctions are normalized within.

Fermis Golden Rule

Transition probability per unit time (Transition Rate) for a transition from an initial state into a continuum of final states becomes constant

$$R_{i \to f} = \frac{d}{dt} P_{i \to f} = \frac{2\pi}{\hbar} \left| V_{fi} \right|^2 \rho(E_f)$$

Variational Principle (Helium Ground State)

The Hamiltonian for Helium (Z = 2), is not possible to solve exactly because of the V_{ee} term. We ignore the term, and the exact solution to TISE with Hamiltonian $\hat{\mathbf{U}} = \hat{\mathbf{U}} + \hat{\mathbf{U}}$ becomes

$$\mu = \mu_1 + \mu_2$$
 becomes
 $\mu, \mathbf{r}_2) = \psi_{100}(\mathbf{r}_1)\psi_{100}(\mathbf{r}_2) = \frac{Z^3}{\pi a^3} \exp\left(-\frac{Z}{a}[r_1 + r_2]\right)$

with
$$Z = 2$$

We create a trial wavefunction α^3 1 0

$$\phi(\mathbf{r}_1,\mathbf{r}_2)\frac{\alpha}{\pi a_0^3}\exp\left(-\frac{\alpha}{a_0}[r_1+r_2]\right)$$

where α is a variational parameter.

 $E_g \leq E(\alpha) = \langle \phi | \hat{H} | \phi \rangle = \langle H \rangle$ One would now find $E(\alpha)$ and minimize it as to estimate the ground state of the Helium atom.

One would first rewrite the Hamiltonian to

$$\hat{H} = \hat{H}_1 + G \frac{1}{r_1} + \hat{H}_2 + G \frac{1}{r_2} + V_{ee}$$
 where $G = \frac{(\alpha - Z)e^2}{4\pi\epsilon_0}$
Then find $E(\alpha)$ by

 $E(\alpha) = \langle \phi | \mathbf{H}_1 | \phi \rangle + \langle \phi | \mathbf{H}_2 | \phi \rangle + \langle \phi | V_{ee} | \phi \rangle$ + $G\langle \phi | 1/r_1 | \phi \rangle$ + $G\langle \phi | 1/r_2 | \phi \rangle$

10/10 MISCELLANEOUS

Electron volt unit conversions					
Quantity	Unit	Value (3 sig. dig.)			
Energy	eV	$1.60 imes 10^{-19} \text{ J}$			
Momentum	eV/c	$5.34 imes 10^{-28} \text{ kg} \cdot \text{m/s}$			
Mass	eV/c ²	$1.78 imes 10^{-36}$ kg			

Fundamental constants						
Name	Symbol	Value (3 sig. dig.)	In natural units			
Planck's reduced constant	ħ	1.05×10^{-34} Js	1			
Speed of light	С	$3.00 \times 10^8 \text{ m/s}$	1			
Electron mass	m _e	$9.11 \times 10^{-31} \text{ kg}$	0.511 MeV			
Proton mass	m_p	$1.67 imes 10^{-27} m kg$	938 MeV			
Proton charge	е	$1.60 imes10^{-19}\mathrm{C}$	$\sqrt{4\pi\alpha}$			
Electron charge	- <i>e</i>	$-1.60 imes 10^{-19} \mathrm{C}$	$-\sqrt{4\pi\alpha}$			
Permittivity of space	ϵ_0	$8.85 \times 10^{-12} \text{ C}^2/\text{Jm}$	1			
Fine structure constant	α	$e^2/(4\pi\epsilon_0\hbar c) \simeq 1/137 \simeq 7.30 \times 10^{-3}$	$e^{2}/(4\pi)$			
Bohr radius (Hydrogen atom)	a_0	$4\pi\epsilon_0 \hbar^2/(m_e e^2) \simeq 5.29 \times 10^{-11} \mathrm{m}$	$4\pi/(m_e e^2)$			

Common integrals

$$\int x \sin(ax) dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$$
$$\int x \cos(ax) dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$$

Integration by parts

$$\int_{a}^{b} f \frac{dg}{dx} dx = -\int_{a}^{b} \frac{df}{dg} g dx + fg \Big|_{a}^{b}$$

Exponential integrals

$$\int_{0}^{\infty} x^{n} e^{-x/a} dx = n! a^{n+1}$$
$$\int_{-\infty}^{\infty} e^{-ax^{2}} dx = \sqrt{\frac{\pi}{a}}$$
$$\int_{-\infty}^{\infty} x e^{-ax^{2}} dx = 0$$
$$\int_{-\infty}^{\infty} x^{2} e^{-ax^{2}} dx = \frac{\sqrt{\pi}}{2\sqrt{a^{3}}}$$

Trigonometric identities

 $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$ $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$ $\sin(a)\sin(b) = \frac{\cos(a - b) - \cos(a + b)}{2}$ $\sin(2\theta) = 2\sin\theta\cos\theta$ $\cos(2\theta) = \cos^2\theta - \sin^2\theta$ $\sin^2\theta = \frac{1 - \cos(2\theta)}{2}$ $\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$

Gaussian integrals

$$\int_{0}^{\infty} x^{2n} e^{-x^{2}/a^{2}} dx = \sqrt{\pi} \frac{(2n)!}{n!} \left(\frac{a}{2}\right)^{2n+1}$$
$$\int_{0}^{\infty} x^{2n+1} e^{-x^{2}/a^{2}} dx = \frac{n!}{2} a^{2n+2}$$

Law of cosines

 $c^2 = a^2 + b^2 - 2ab\cos(\theta)$