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1/10 Q.M. FORMALISM Dirac Bra-ket notation Inner product in 7 The commutator of two operators A and B is

b Q ket: |v) is a column vector in The inner product of |f) and |g) is the operator
Hilbert space 7 in Q.M. bra: (f| is a linear map f: H - C * A _ 1% 8l = 2R

All square-integrable (L?) functions on A bra acting on a ket is noted as (fllg) =(flg) = f_ fx) g(x)dx € C C= [A' B] = AB -
R. In Q.M,, all L? functions representing (fllvy = (flv) € C

V) S e O £ e where (f| = |f)T = |f)*T A and B commute IFF C =0

Note that (f|g) = (glf)* and that

Bras are row vectors in dual-space of H

B ) Notable commutators
Observable operators (in position space) i = f_ Ifelfdx =0 e R ih | [f,P] = 3ih ‘ [p.T]=0
Name General def. Cartesian def. where (f|f) =0 © f(x) =0
Position ) R=x, §=y, 2=z f normalized IFF (f|f) =1

3 ~ . and g orthogonal IFF =0
Mor.nenjcum P = _lhza_k'z KZxvz f{fn} osi‘thono?mal IFF (;S,S}Z; =1
ELZ?S; ' . T = —zh—aa? 5= 3 L Al Probabilit
Potential - ) m {fn} is somplete if any other function s e var)'t,able
Energy V=vmo=v Situation dependent g in # can be expressed as if X is discrete if X is continuous
g(x) = Z;o=1 Cnfn () where Cn = (fnlg)
Situation dependent The adjoint + is the same as taking X) = Zxapx(n) | (X) = [ 7 xfy(0)dx

Total Time-dep. pot. E =i
Ener Rrryah -
& b md_ep_"%' E=E PYRYIF VR VR the transpose of the complex
Hamiltonian > - (— ) +V conjugate.

ihS
ih
ih

y
z

3,

z
S
Sy

X

(X?) = Zpiaxipx (%) | (X2) = fjoooxzfx(x)dx

2m

a2 T ay? T o2

If f and g are discrete, use sums. Pr(a < x < b) Pr(abS x < b)
= Zasx,<b Px(%n) = fa fX(x)dx

Angular ) . . VIX] = (X?) — (X)?
Momentum = Eigenvalue equation

Qv = qv o = VI = )~ P

¥ is an eigenfunction of Q, and q is px(x) is the probability mass function (PMF) of X,
the corresponding eigenvalue. fx(x) is the probability density function (PDF) of X,
B 5 = (X) is the expectation value of X,

Spin-1/2 S=—¢ Observable operator V[X] is the variance, and oy the standard deviation.

2 .
Angular (o = vector whose components = = An operator whose eigenvalues

are the Pauli matrices o) : represent outcomes of measurements Operator identities and properties
(alAt|b) = (b|A|a)* Ala) = (a|AT
Completeness “axiom” n n (KE)* — BtAt
The eigenfunctions of an observable — > —
operator are complete; meaning any C|¥) = Al¥) + B|¥)
Hermitian operators function in H can be expressed as a
An operator Q is All operators lin. comb. of them.
Hermitian if and only if | representing observables | A Hermitian operator is .
(Flaf) = (@f|f) v f are Hermitian, because | equal to its adjoint (self- State of QM systgm and the wave fU“CtlQ“ .
(Q)ER adjoint) The state of a system |¥(t)) is a vector in H, and can be expressed in different bases of
Same as = (Q) =(Q)" eigenfunctions. The basis we almost always use is that of position:
(FIQIf) = (FIRMA) vV £ = (flQf) = (QfIf) Q=0 W(r, ) = (r|¥()

where |r) is the eigenfunction of £, with eigenvalue r, and ¥(r, t) is the wave function.

Momentum

Total Angular
Momentum

j=L+S

Clv) = A (B|W))




2/10 WAVE FUNCTIONS

The wave function ¥ is the solution to the TDSE. It is
the probability amplitude function of the system. We
can derive the probability distribution of various
observables from W.

TDSE (7ime dep. Schrédinger Equation)
Ay = Ew

which when written out becomes
2

h 9
—— VYLV Y= ih—W
2m at

with ¥ = ¥(r,t),and V = V(r,t)

TISE (Time indep. Schrédinger Equation)
If the potentialis not a function of time, one can
use separation of variables on ¥:

Y(r,t) = Y(r)p(t)
which, when put in the Schrédinger Equation,
leads to the TISE:

h? ~
—ﬁvzw +Vy =Ey sameas: HY =EY

and
¢(t) = exp(—iEt/h)

General solution to TDSE (discrete sum)
GivenV _indep. of time, the general solution ¥ is
a linear combination of separable solutions {i,,}

[oe]

W(E ) = ) cqtfy (e Pt/

n=1

where |c,|? is the probability that the measured
energy is E,, thus Z,|c,|*> = 1

Bound state
E <V(to)

Finding c,
Given initial wave function

YE0 =) aa®

using Fourier’s trick, we get

Unbound state
E >V (£o)

Requirements of ¥
¥ must be continuous and have a
continuous derivative.

¥ must be square-integrable.

The cumulative probability of ¥ must be 1
on its domain (normalized):

(W) = f P Hl%dr=1
R
If discrete: (W ()|W(2)) = Zplcnl®> =1

Properties of {y,,}
The infinite set of solutions to TISE {,,} has
certain properties:

1. If V is symmetric, then the solutions are
alternately even and odd with respect to
the center of the well; ¥, is even, ¥, is odd
and so on...

2. As you go up in energy, each successive
state has one more zero crossing; 1, has
none, ¥, has one, ...

Eigenstates/Eigenfunctions and Eigenvalues
When a observable Q is measured, then the system “collapses” from being in a discrete
or continuous superposition of eigenstates/eigenfunctions to ONE
eigenstate/eigenfunction. The result of the measurement is the eigenvalue related to
that eigenstate/eigenfunction. Eigenstates/eigenfunctions and eigenvalues for a

observable Q are found using the eigenvalue equation Q¥ = q¥

Spectrum
Collection of all eigenvalues q of
an operator Q. If two or more
linearly independent
eigenfunctions ¥ share the same
eigenvalue, the spectrum is
degenerate.

Expectation value
For an operator Q representing an
observable Q we have

Q) = (¥®IQI¥(1))

=f Y(r,t)* QW(r, t)dr
]R3

3. They are mutually orthogonal:

f;pr*nlpndr = Omn
R

Q.M. expectation values follow
classical dynamics

4. The set is complete, meaning any other
function f can be expressed as a linear
combination of {i,,}:

FO=Y @

In real life, most
V are(0 attoo

Cn =f Yy (r)¥(r, 0)dr
]R3

Using the completeness and orthogonality
of {y,} we have

&= [ pr@r@ar
]R3

Sometimes called “Fourier’s trick”

Stationary state (separable solution)
State where all observables are indep. of
time. This occurs when the probability
density |¥(r, t)|? is indep. of time.

Note that
(Q*) = f Y(r,t)* Q® W(r, t)dr
]R3

Expectation value trick

(p) = m%(r)

Eulers formula
e'? = cos(¢p) + isin(p)

1 . .
cos(p) = 3 (e'? + e7 %)

sin(p) = 5 (e — ™)

le’| =1

Complex conjugate
(a+ib)* = (a—ib)
(eiq’)* = e_i<P

If the spectrum of Q is discrete, then its
eigenfunctions ¥ lie in H and physically
constitute realizable states. Its eigenvalues
are real, and eigenfunctions belonging to
distinct eigenvalues are orthonormal.

If the spectrum of Q is continuous, then its
eigenfunctions W are not normalizable, and
thus not realizable states. Though a
lin.comb. of them may be normalizable and
thus physically realizable.

Probability density (in pos. space)

b
Pr(a<x<b)= f WY(x,t)* W(x,t)dx

b
= f |W(x,t)|?dx
a

where W(x, t)* W(x,t) = |¥(x,t)|? is the
PDF of ¥

Momentum-space
Operators become:
p=p and Tt =ihV,

0 0 d

=—+—+
P op, adp, Op,

Momentum-space < Position-space

W(r, £) = (r|¥(o) = f (rIpXpI¥(©)dp
W(p, ) = (pl¥()) = f (PIPNEW(O))dr

Modulus of complex number

la + bi| =+ a?+ b?

Y =aqa+ib=|¥|*=a®+b?
Y =rel? = @2 =12




3/10F  SOLUTIONS

Infinite square well (1D)
_ (0, x €[0,L]
) = {00, otherwise
TISE becomes:
d?y 5
.
General solution to this is:

Y(x) = Asinkx + B cos kx

Since ¥ must be 0 outside the well,

continuity of i means:

P(0) =y(a) =0
nmw
=>B=0andk=T, nez,

V2mE
h

_hPki  mPR?
" om 2mi2"
A can be found by normalizing ¢

A2 =2/L = A=2]L
“ | (x) = /2/L sin (%x)

Solving == = gives

2

Ladder operators

(Fip + mwX)

1
V2hmow

The Hamiltonian can be written as

_ 1 1
A= ho (a+a_ T E) = hw (a_a+ ==

)

Ga]l=-1 [a4a]=1

Exact actions of ladder operators:

AP =Vn+ 1y,
Ay, = ‘/ﬁlpn—l

Eigenvalue equations:
ﬁ @_yy) = (B, — hw)(@_y,)
H @) = (En + hw)(@49,)

Harmonic Oscillator (1D)
1 1
V(x) = Ekx2 = Emouzx2 where w? =k/m

Write TISE using the Hamiltonian expressed with
the ladder operators:

ho (a+a_ + %) ¥ = E

One cannot apply a_ forever. At the ground
state, 1, we have a_y, = 0 which can be used to
determine ¥,:

=) er(-7)

Which when plugged into TISE gives:

1/4

E, = ! h
0= 5w
By continuous application of 4, one finds that
Yo () = A (@4)"Po(x)
with energy

1
En=hw<n+5)

One can use the exact action of the ladder
operators to show that 4,, = 1/+/n!

Putting it all together:
1/4

1 mw 2
P,(x) = (%) T H,(xymw/h)e 20"

Physicist's Hermite polynomials
dTL
2 -
Hy(x) = (=1)" e* ——e™

2

Dirac delta function

5(x) = {gi i 8 and ff;&(x)dx =l

Kronecker-delta Dirac-orthonormality

_omen (x"Iplx') = PO — )

Omn 1,m=n

x"" and x are position
eigenstates

Free particle (1D)

This means separable solutions
(stationary states) do not represent
&2 physical states of free particles.
@5 = —kZ, = Meaning: free particles do not have
G h definite energy.

General solution to this is
l/)(x) — Aeikx +Be—ikx

V(x)=0

TISE becomes:

General solution to TDSE is still a lin.
comb. of separable solutions though,
but it's an integral now, not a sum:

9 h § h

= l_p(x' t) — Aelk(x—%t) + Be—lk(x-i'%t) _
1 r= iex -1

Redefine k = i% Pl )= Ef_wf(k)e (o2

Here the product 1/v/2m f (k)dk take
the role of c,,. One can find f (k) by

_L . —ikx
Fl == f_ W 0)erdx

2
{1t
> P(x,t) = Ae
However, this is not correct. Because
f‘{J,:‘Pkdx = |A]? -

L.e. ¥ not normalizable.

We say that W carries a range of k and
energy values. Calling it a wave packet.

Infinite cube (3D)
V(r)={ 0, x,y,z€[0,L]

Harmonic Oscillator (3D)

1
V() = Ekr2 = Emwzr2

0, otherwise
3/2

wa,b,c (l‘) = (%) sin (aL_Tl' X) sin (an y) sin (CTT[ Z) | wa,b,c (r) = Yq (x)lpb (y)l/)c (Z) |

Eqpe =hw(a+b+c+3/2)

232
(a®? +b?+¢?) where a,b,c = 0,1,2,3, ...

Ea,b,c =572
2k and v, is solutions to 1D H.O.

where a,b,c € 1,2,3, ...

Degeneracy
How many states with the same energy. For Infinite Square well, and 1D-Harmonic
Oscillator, a specific state is indicated by a specific value of n.

For example: n = 1,2, 3,4, etc.

For the 3D counterparts, a specific state is indicated by a specific (a, b, ¢)
combination.

For example: (a, b, c) = (1,1,2),(2,1,1), (1,2,3), etc.




4/10 SPHERICAL, HYDROGEN and HELIUM

Spherical < Cartesian
x =rsinfcos¢ y=rsinfsin¢ z=rcosb
dV = dx dy dz = r*sin 8 dr d6 d¢
cosf =z/r tan¢g = y/x

r? =x? +y? + 722

r is distance to origin, 8 € [0, 7] is polar angle, and ¢ € [0, 27] is azimuth angle.

Spherical Laplacian
6) 1 0 ( 0 6) 1 02
or) " r2sin6 a0 sin 260/  r?sinZ 0 \d¢p?

Spherical TISE

a /. o 1 a o 1 2P
(2§)+r251n960(1n9%)+—r251n20<6¢)]-th EY

2m |r2 ar

Radial and Angular equations
Assuming Y(r,0,¢) = R(r)Y (6, ¢), and V = V(r), then from TISE we get

The radial equation:

h% d*u [ h? (£ + 1)]
u=Eu

- 2madr? 2m 12

where u(r) = rR(r), and (£ + 1) is a separation constant

And the angular equation:
. 0 ( eay) %Y
sin sin 50) T 90z =

06
Radial equation determines the dependence of ¥ on r, and the angular
equation determines the dependence of i on 8 and ¢.

— (¢ +1)sin?0 Y

Solving radial equation Solution to angular equation
The radial equation is \j

2¢+1)(# —m)!
4t (£ +m)!

identical to TISE in 1D, with
effective potential Y

e+ 1)

Vo=V + —
eff m r2

e™P P (cos 6)

where Y;™ = Y, (6, ¢). This is called the
spherical harmonics.

To solve the radial
equation for R, we need an
expression for V

This is assuming we can write

Y(6,¢) = 0(8)P(¢)

Reduced mass

Associated Legendre Function (m > 0)
meZmy,

Legendre Polynomial (r

¢ d
P = (i) G2t PO = A=A () n = e
’ e (4

Associated Laguerre Polynomials Associated Legendre Function (m < 0)
(£ —m)!

-p d\? !
B = () e P = (D)™ G P

Bohr radius
Ameyh?

a =
u Le?

Coulomb’s Law The Bohr Formula (allowed energies of Hydrogen like atom)

2 2
L ze [”e = ~ —13.6eV -

V() = - —
@ 4mey T 32m2¢e2

Hydrogen-like atoms
Systems consisting of ONE electron and Z protons centered at the origin. Allowed energies follow the
Bohr formula, and the potential of the electron is given by Coulomb’s law.

The wave function

Ynem (r,0,¢) = Ry (r) Y{’m 6, 9)

whereR,, ,(r) is the radial wave function (solution to radial equation with Coloumb’s potential)

t Zr
¢ —1)! (27 -
Rue) = |(22) St (220 S e
na# 2n(n + £)! \na,

Physical interpretations of £, n, and m (not the mass)
£ € [0,n — 1] is the angular momentum, and m € [—#, #] is the magnetic quantum number. The
principal quantum number n = 1,2,3, ... represents the energy level. Note A? = +1 and Am = —1,0,1.
£(£ + 1) and m? appear as separation constants when solving radial and angular egs.

Hamiltonian for Helium-like atoms
Two-electron Hamiltonian for helium-Llike atoms is

ﬁ:ﬁ1+ﬁ2+‘/ee

" 4meg ry — 1y

Where r; and r, is the distance vectors of electron 1
and 2 with respect to the nucleus (static at origin), and
V. is the electron-electron repulsion.




5/10 OPERATOR MATRICIES and VECTOR REPRESENTATION

Wavefunction as a column vector
The wavefunction W (r, t) is the same as a column-
vector |¥(t)) in H in the position basis

@) = [ @0 rydr
R3
Where {|r)} is the position basis spanning H .

Another basis is that of energy, which unlike
position is discrete

[ee)

WD) = D eal®) |En)

n=1

Where {|E,,)} is the energy basis spanning .

Visualizing function as a column vector
This is not completely mathematically rigorous, but
gives an idea of how a function can be represented as a
vector

Y(-2¢,t)

Y(—e,t)
Y(0,t) |wheree—0
Y(e, t)

Y(2e¢,t)

Y(x,t) represented as

In other words, you can think of the ket |¥(¢t)) as
holding all possible values of W through time, and
which can be represented in a certain basis.

Operator as matrix
An operator Q acting on a wave function W(x, t),
is the same as that operator’'s matrix
representation Q (in the position basis in this
case), acting on the vector |¥(t))

Common eigenfunctions
[A,B] = 0 & they have common eigenfunctions:
A\fn = anfy
ﬁfn = bufu

Ladder operator matrices (H.O.)
i) =vn+1in+1)=(ml|a,|n) =vn+ 18,041
0 0 0 -
Vi 0
N
0 3 -

=3, s a, =

0
0

a_ln) =vnln—1) = (mla_|n) = Vn 81
0 Vv1 0 0
0 0 V2 o
0 0 0 v3 -

Where the basis {|n)} is such that

1 0 0
1) = (8) 12) = <(1)> 13) = (‘1)) etc.

and (m| = |n)T = (m[n) = Oy

Hamiltonian operator matrix (H.O.)
~ 1
H=hw(ﬁ+ﬁ_+5> = H=

The eigenvalues of a diagonal matrix are the values
along the diagonal, which in this case we see
matches the eigen energies for the 1D H.O.

Of course, using the same basis {|n)} as above

Four ways to attack a Q.M problem
Choose a space, like the position space
(¥Y(r,t) = (r|¥(t))), and solve TDSE
Define operators which allow to take or add
energy (such as the ladder operators in H.O.)

Chose basis vectors, and compute the
eigenvalues of the H matrix (Hamiltonian
matrix)

Use an approximation method.

UNCERTAINTY

Variance
o = (@) - (@* = ([@-(@))

Standard deviation

gq = V(Q?) —(Q)?

Generalized uncertainty
principle
au05 = 1/2 - | (V|[A B]|¥) |

The uncertainty
principle
040, = h/2

Energy-time uncertainty principle
AEAt > h/2
Where AE = oy and At = g,/ |%(Q)|.
At represents the amount of time it takes the expectation value of
Q to change by one standard deviation. There is no time operator.

Generalized Ehrenfest theorem
d i SN aQ
L= + (5]

If [A,Q] = 0 and
(0Q/at) = 0,then (Q) is
constant, i.e. conserved.

Results from Ehrenfest theorem
d d dv
) =mo) =) =—(7)

av da
Note that <E> * EW)

Minimum uncertainty
0,0, = h/2
For the one-dimensional Harmonic Oscillator, this happens at the
ground state.

Consequence of the uncertainty principle in 1D
For all 1D systems, we have E;, > —V,. Meaning the ground state
energy is always greater than the minimum potential. This is a
consequence of the uncertainty principle.

Ground state energy
For an arbitrary normalized state ¥, we have

E, < (P|H|¥) = (H)

where Ej; is the ground state energy.

. . (P|HIP)
If ¥ is not normalized, then E; < W)




ANGULAR MOMENTUM

Angular momentum operators

A

6/10

i-\‘x=yf’z_zfj ]:y=Zﬁx_xpz
Sl
Angular momentum operators (spherical)

~ . . d 0
L, = —ih [—sm(d)) T cos(¢) cos(6) %

- 0 0
L, = —ih [cos(d)) FTin sin(¢) cos(0) %]

L, = —ihl
VAR I’ad)

Hamiltonian using angular momentum
A =%[—h23(r23) +L2] +V
2mr ar ar

Angular momentum commutators
[L,, L,] = inL, [L,,L,] = kL, [L..L,] = inL,
[0 =0fork=xy,z

Generally:
[til ﬁ]] =ih gijk f‘k
Angular momentum uncertainty
h
0,01; = 5 KL | €|

ie, if for example L, is well known, then L, and L, are not.

Angular momentum ladder operator
L,=L,+iL,

A useful relation: L, Ly = 2 — [2 + AL,

Angular momentum eigen equations
Using angular momentum ladder operator, one can show

Where the eigen function f;™ happens to be the spherical
harmonics Y;". Some also represent f;™ as |£ m).

Three-dimension Levi-Civita symbol
—1 if(i,j, k) is (z,y,x), (x,2,y),0r (¥,x,2)
g =1 0 ifi=jorj=kork=1i
1 if(Q,j,k)is (x,y,2),(y,z,x),0r (z,x,y)

Pauli matrices

o

01)
i

“x=(1 0

Hamiltonian in mag. field. using spin
For particle in uniform field magnetic field B = Bye,
oo & _ 1 0
H=—yB,S, = —a, (0 _1)
where ay, = yByh/2

Spin expectation value
State of a particle expressed with spin

_ (1\ —igt/n 0\ —igt/n
I‘P(t))—a(o)e T +b(1)e !
where E; = —ay = —yByh/2
This state can be written as a spinor

_ aeinOt/Z
|Lp(t)) - (be_i-yBot/2>

= <l.p(t)| = (a*e—inot/Z b*einot/Z)

Which can be used to find the expectation value:

~ h
Sy = (FOISF(@©) = 7 (F Do [P (©))

For S, it becomes:

h h
(S,) = E(a*a —b*b) = Ecos(/l)

h
(52)

1
|

For S, it becomes:

h . .
(Sy) = 7 (@'be™VBot + braeirbar)

Spin
An intrinsic angular momentum carried by elementary
particles; somewhat analogous to classical spin.

Spin 1/2
Particles with s = 1/2. There are only two spin eigenstates:

. 11
Spinup: |T) = |[sm,) = |§ E)
Spin down: [1) = |s my) = E (

Spin-1/2 operators
. h
S= EO’

(o = vector whose components are the Pauli matrices)

Spin commutators
[5..5,] = iRs, [3,.5,] = inS,
B: Same relations as with angular momentum operators!

[S..Sx] = iRS,

Spinors for spin-1/2 particles
A particles general state can be represented by a 2 x 1 matrix
called a spinor:

W =(;)=a(o)+o())
where ((1)) representing spin up (1)
and (?) representing spin down ({)

Spin ladder operator
S+ =S5, 1S,

1 .
) < acts on spinors

Spin eigen equations
Using the spin ladder operator, one can show

S%|smg) = A?s(s + 1)|smg) &  S,|smg) = Amg|s my)

Unlike ang. mom., |s ms) is not the spherical harmonics,
thus no need to omit half-integers s and mg values:

1,3
s=0,5,1,5,... mg=-s,—s+1,.,s—1,s



7/10 TOTAL ANGULAR MOMENTUM

Total angular momentum operators
ik = f‘k + gk' k = X, ¥,z

Total angular momentum commutators
[jxﬁjy] = lhjz [jy'jz] = lhix [jz' ix] = lhjy

NB: Same relations as with angular momentum operators!

Total angular momentum ladder operator
ji = jx + ijy

Telimy) = B JjG +1) = my(m; £1) |j (my £ 1))

Total angular momentum eigen equations
Plim) = %G+ Dlimy) and T |jmy) = hmyljmy)

TWO PARTICLES and TOTAL SPIN

Addition of spin angular momentum Two spin-1/2 particles
Particle 1 has spin s; and m,, represented by the Consider a system with two spin-1/2 particles (e.g.
eigenstate |s; m,), likewise for a second particle in proton and electron in Hydrogen ground state).
eigenstate |s, m,). The composite state is denoted Measured on a given axis (usually the z-axzs), each
by [s; s, m; m,). The eigenequations become: particle can be either spin up T, or spin down !, giving

a us four basis states:
S2lsy s, my my) = s1(sp + DA%|sy s, my my)

§%|51 Sa My My) = 55(s, + 1)A?|sy 5, my my) [T1), 118, 1), L),
Slz|51 S, my m2> = mlhlsl S, My m2>

S 1) and |L{) are aligned in z-direction
Szz|51 S, My My) = myhls; s, my my,) [T1) [1) g z

\/i_(lTl) + |I71)) is aligned in x or y direction
What is the total spin angular momentum? 2
S=S,+S, Total spin here is s = 1 when aligned, thus:

Same as asking: what is the net spin s, and what is 111

the z component m,? 1
—= >N+ 1)

[f—s|<j<t+s
Total angular momentum operator matrices
.1
Jx = E (]++ ]—)

. 1n o
Jy = 5:0:-12)

(triplet state) s = 1
The value of m is trivial V2
S;ls1 s, mymy) = (§1z + §zz)|51 S, My my) -
= hm = h(m; + m,) 7 (M) = I11) is not aligned in any direction, this s = 0

[44)

ms=m1+m2

j oee 0
o - _]

A matrix with zero everywhere except along the diagonal,
where it starts at j and moves down with integer steps to —j

QUANTUM NUMBERS

Name Range Usage

Principle [1, )

Ey
Azimuthal [0,n—1] L=.2+ 1Dh

Magnetic = L, =mh

Spin Int. and Half-int. | § = ./s(s + D&

Spin magnetic [=s,s] S, =msh

Tot. ang. moment. [I€—sl|,€+s] ] = /j(j + 1A

Tot. ang. moment. proj. | [—j, j] J; = mjh

All having integer steps within their range

1
(singlet state) s = 0 {—(|TL) — [IT))
Regarding the net spin s, the answer is that you get V2

every spin from s; + s,, down to s; — s, in integer

steps (assuming s; > s,): Bosons (e.g. gluon and photon) have integer spins
= (s1 52 (145 =1, (51452 =2) e (51— 52) Fermions (e.g. quarks, muons, electron, neutrino) have

Highest spin when they are parallel, lowest and half-integer spin
antiparallel.

Two particle system (no interaction)
Y(1,2) = Y, (DP,(2)

Where 1, 2 represent all coordinates, spin, etc. of particle 1
and 2 respectively. The indexes a and b represent states.

If a = b then ¥(1,2) = Y(2,1) else Y(1,2) # P(2,1)
Bosons:
[Ya (DYp(2) + Yo (2) 3, (D]

Fermions:

(Yo (DY (2) = e (29, (1]

4
V2
(12) = =
lpF ’ _\/E

If a = b then ¥(1,2) = 0 = Two fermions cannot be in
the same state (Pauli exclusion principle)

lpB (112) =




PERTURBATION THEORY

Nondegenerate Perturbation (time indep.)
Suppose the TISE cannot be solved exactly
Hlyn) = Enlihn)
To approximate a solution rewrite H so the TISE becomes
(Ho + H) () = Enlihy)
where H; is a small disturbance/perturbation, and
Holop) = e3ldy)
has known analytical solutions &2 and ¢Q. Where there is
no degeneracy.

A 15 order approximation of the wave function and the
energy can be expressed as:
(pmIHi197)
o) = (@9 + ) LT
m#n  €p — &m
E, = & + (¢nlH; o)

|pm)

Degenerate Perturbation (#ime indep.)
If €2 of H, has degeneracy g; then there exists g
orthonormal solutions X?,i = 1,2,3, ..., g of the equation

HoX? = &3x?

Thus, by linear algebra, we can write

0 g 0
on = § ¢ X;
i=1

Where {c;} are found by the g-number of equations
g
zi_l(Hji —e8;)c; =0, j=123,..g

where H;; = (Xj°|ﬁ1|Xi°) and &} = (p2|H,|p2)

The approximations become

0
i

Note! f; should be relatively small, i.e.,
[(pmIHilpR)| < lef — el

Note! If H;; = H;;8;; then eh=e! = (x?|H,|X?)
=123, ..,9

Time-Dependent Perturbation Theory

Consider a Hamiltonian consisting of a time-independent
part H, and time dependent part V(t):

H=H()=H, +V(t)

where V(t) is a disturbance/perturbation. A solution to
TDSE can be written as

W) = Z, ¢, (t) |9, e~ Ent/R

where |¢,,) and E,, are known solutions to the TISE with
Hy. We need to find {c,(t)}, which follow the equations

. . — i t —
ihc, = z e Vomet®mnt . m =1,23, ..
n

_ Em—En

If the system is in one of its eigenstates [y,,) of H, at time
t = t,, we have a special first order result:

1 B . 1
C(t) = 8 + Ef Vo (t) et emnt dt’
to

The transition amplitude c(t) from initial state [1);) with
energy E; to a final state |1)/) with energy E; we have

1 ¢t . ’
¢ () = Ef Vei(tDe'ri® de’  assuming  f # i
to

Transition probability from state i to f is given by

Pp(®) = | @)

d
= Ecmr Vom = (1/1m|V|1Pn), and Wyn 7

where ¢,

Suppose the disturbance V(t) is weak, such that the
coefficients c, (t) vary vert slowly with time, meaning

1 ¢ 9 12
n(®) = n(te) + 35 ) n(to) | T (Eetomdt
ih Loy to

A First order general time-dependent perturbation

Harmonic Perturbations
Let V(t) = V,(r) cos(wt) Note w # wy;
1 _ ei((uﬁ+w)t

1 .
Cemission(t) = §<¢f|VO|¢z>m if Ef < Ei
i

1— ei(wﬁ—w)t

1 .
Cabsorption (t) = §<¢f|Vo|¢i)m if Ef > E;
L

Density of states (DOS)
Number of allowed states per energy

p(E) = o N(E)

Density of states for Fermions
For Fermions with mass m:

p(E) = Vo2 (Zh—T)S/2 vE

where V, is a general “normalization volume”, i.e,, the
box volume where all wavefunctions are normalized
within.

Fermis Golden Rule
Transition probability per unit time (Transition Rate)
for a transition from an initial state into a continuum of
final states becomes constant

d 21 2
Risp = Pioy = 7|Vfi| p(Er)

Variational Principle (Helium Ground State)
The Hamiltonian for Helium (Z = 2), is not possible to
solve exactly because of the V,, term. We ignore the
term, and the exact solution to TISE with Hamiltonian
H = H, + H, becomes

Z3 VA
Wo(13,15) = o0 (500 (1) = ——exp (= —[r, +151)
mag ay
with Z = 2

We create a trial wavefunction

¢(ry, 1) —5exp (‘% [ + 7'2])

Of3
]
where a is a variational parameter.
We have
E, < E(a) = (p[H|gp) = (H)
One would now find E(a) and minimize it as to
estimate the ground state of the Helium atom.

One would first rewrite the Hamiltonian to
_ (a-2)e?

ﬁ=ﬁ1+G%+ﬁ2+G%+Vee where G =
1 2
Then find E(a) by

E(a) = (¢|H;|p) + ($|H|9) + (V| )
+ G(P|1/11|P) + G{(P|1/1;|P)

4T€EQ




SCATTERING

Classical Scattering

after
Thomton & Rex

Source: https://www.tcm.phy.cam.ac.uk/~bds10/agp/lec20-21.pdf

Scattering angle 6 is determined by impact
parameter b. We have

dQ = D(0)dQ
bdbdp |
sin@df dp  sinf |deo

D(0) =
where o (s the cross section and
dQ = sin 6 dO d¢ is the solid angle.

o= [do=[D(6)dO
__ # scattered particles (any angle) per time

# incident particles per time

Hard Sphere Scattering

0= . m (7]
=1 a a= >~ 3
Impact parameter can be expressed as:

b= Rein@) = Rsin(5 ~7) = Reos ;)
= nsm(a) = K sin 2 2 = K Cos 2

Which implies

0 = {2 acos(b/R) if b <R
~ o if b>R

el =270 (3)
Rcos(9/2) 1

=00 =g 2

Cross section becomes
o= [do=[D()dQ = nR?
i.e., size of scattering object

Hard Sphere Scattering Mean Free Path

If there is a quantum probability P, for scattering in/at the hard sphere, then the total cross section
for the transition question becomes

o = P,tR?

The smaller Ps, the smaller the geometrical cross section, and the longer becomes an impinging
particle mean free path in a medium of spheres:

L=1/op,

where p is the number of spheres per volume unit. The mean free path is the average distance a
particle travels before changing direction or energy due to collisions.

iz 3

Q.M Scattering
an Asymptotic incomming:

1 . .
l/}in — _elk-r — Celk~r
Vv

Scattered form of wavefunction

sc = ¢ f(6,9) eik.r/r

where ¢ some complex constant, and f the scattering amplitude.

Yin and Y. are boundry conditions for the TISE

h
[_z_vz + V(r)] »(r) = EY(r)

which can be regritten to
(V2 + k) () = ulr) P(r)
Where k? = 2mE/h? and u(r) = 2m/h?V (1)

Current density p(r,t) = (1, 0)|*? = pr(r, t)av =1

From the realm of electromagnitism, we have

6]
atfp(rt)dV— f] dS—fV-jdV
v

Which gives us what is called “conservation of probability”
dp
E +V-j=0

Knowing that Z—’t) = %Wlp, we can use TDSE to find the current

i=Re(¢*.£V¢)

hk

= Re(Winooa €)= lef* o

im or

nk
= |c|* |f (6, p)|? i Z

The number of particles into dQ per time is thus j,. - 72dQ
Y 2
Jscr1r°dQ  do
Sdo=—>—=|f(0,9)|?
2= .
where f (8, ¢) can be approximated as the Born Approximation to

F6.9) = F7(6,0) =~ j oK) 1)

k' is for the final plane wave



https://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec20-21.pdf

10/10 MISCELLANEOUS

Electron volt unit conversions

Fundamental constants

Name Symbol

Value (3 sig. dig.)

Planck’s reduced constant

1.05 x 10734 Js 1

Speed of light

3.00 x 108 m/s 1

Quantity Unit Value (3 sig. dig.)

Energy eV 1.60 x 10717]

Electron mass

9.11 x 1031 kg

Momentum | eV/c 5.34 X 10728 kg - m/s

Proton mass

1.67 X 10727 kg

Mass eV/c? 1.78 x 10~ 3%kg

Proton charge

1.60 x 10712 C

Common integrals

. 1 x
f x sin(ax)dx = Fsm(ax) — Ecos(ax)

1 X .
f x cos(ax)dx = Fcos(ax) + Esm(ax)

Integration by parts

b dg b df b
folax == [ Lgdx+fgl
L dx e 49 a

Electron charge

—1.60x1071°C

Permittivity of space

8.85 x 10712 C2/Jm

Fine structure constant

e?/(4meghc) ~ 1/137 =~ 7.30 x 1073

Bohr radius (Hydrogen atom)

4meyh?/(mye?) =529 x 10711 m

Exponential integrals

oo
f x"e*/2dx = nl q"*1
0

Trigonometric identities
sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
cos(a + b) = cos(a) cos(b) F sin(a) sin(b)
cos(a — b) — cos(a + b)
2
sin(20) = 2 sinf cosf

sin(a) sin(b) =

cos(26) = cos?6 — sin%6
1 — cos(26)
2

1 + cos(26
cos?6 = %

sin%6 =

Gaussian integrals

€2 2n)! ,a\2n+1
J xone e gy = o (2
0

n! 2

« 2,2 n!
f x2n+1e—x /a dx = _a2n+2
@ 2

Law of cosines
¢ = a? + b? — 2ab cos()

In natural units

0.511 MeV
938 MeV




