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1/10  Q.M. FORMALISM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observable operators (in position space) 
Name General def. Cartesian def. 

Position �̂� = 𝐫 x̂ = 𝑥,    ŷ = 𝑦 ,   ẑ = 𝑧 

Momentum 𝐩 = −𝑖ℏ∇ p̂𝑘 = −𝑖ℏ
𝜕

𝜕𝑘
,        𝑘 = 𝑥, 𝑦, 𝑧 

Kinetic 
Energy T̂ =

1

2𝑚
𝐩 ⋅ 𝐩 = −

ℏ𝟐

2𝑚
∇2 T̂𝑘 = −

ℏ2

2𝑚

𝜕2

𝜕𝑘2
,   𝑘 = 𝑥, 𝑦, 𝑧 

Potential 
Energy V̂ = 𝑉(𝐫, 𝑡) = 𝑉 Situation dependent 

Total 
Energy 

       Time-dep. pot.: Ê = 𝑖ℏ 𝜕

𝜕𝑡
 

Time-indep. pot.: Ê = 𝐸 
Situation dependent 

Hamiltonian Ĥ = T̂ + V̂ = −
ℏ2

2𝑚
∇2 + 𝑉 −

ℏ2

2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉 

Angular 
Momentum �̂� = �̂� × 𝐩 

L̂𝑥 = −𝑖ℏ (𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) 

L̂𝑦 = −𝑖ℏ (𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) 

L̂𝑧 = −𝑖ℏ (𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) 

Spin-1/2 
Angular 

Momentum 

�̂� =
ℏ

2
𝛔 

(𝛔 = vector whose components 
are the Pauli matrices 𝜎𝑘) 

Ŝ𝑘 =
ℏ

2
𝜎𝑘,   𝑘 = 𝑥, 𝑦, 𝑧 

where 

𝜎𝑥 = (
0 1
1 0

)          𝜎𝑦 = (
0 −𝑖
𝑖 0

) 

𝜎𝑧 = (
1 0
0 −1

) 
 

Total Angular 
Momentum �̂� = �̂� + �̂� Ĵ𝑘 = L̂𝑘 + Ŝ𝑘,   𝑘 = 𝑥, 𝑦, 𝑧 

 

Hilbert space ℋ in Q.M. 
All square-integrable (𝐿2) functions on 
ℝ. In Q.M., all 𝐿2 functions representing 

bound states approach 0 at ±∞. 
 
 

 

Dirac Bra-ket notation 
ket: |𝑣⟩ is a column vector in ℋ 
bra: ⟨𝑓| is a linear map 𝑓:ℋ → ℂ 

A bra acting on a ket is noted as 
⟨𝑓| |𝑣⟩ = ⟨𝑓|𝑣⟩ ∈ ℂ 

Bras are row vectors in dual-space of ℋ 

Inner product in 𝓗 
The inner product of |𝑓⟩ and |𝑔⟩ is 

⟨𝑓| |𝑔⟩ = ⟨𝑓|𝑔⟩ ≡ ∫ 𝑓(𝑥)∗𝑔(𝑥)𝑑𝑥
∞

−∞

∈ ℂ 

where ⟨𝑓| = |𝑓⟩† = |𝑓⟩∗⊺ 

Note that    ⟨𝑓|𝑔⟩ = ⟨𝑔|𝑓⟩∗    and that 

⟨𝑓|𝑓⟩ = ∫ |𝑓(𝑥)|2𝑑𝑥
∞

−∞

≥ 0 ∈ ℝ 

where ⟨𝑓|𝑓⟩ = 0 ⟺ 𝑓(𝑥) = 0 

              𝑓 normalized IFF ⟨𝑓|𝑓⟩ = 1  
   𝑓 and 𝑔 orthogonal IFF ⟨𝑓|𝑔⟩ = 0 
     {𝑓𝑛} orthonormal IFF ⟨𝑓𝑛|𝑓𝑛⟩ = 1           
                                and ⟨𝑓𝑚|𝑓𝑛⟩ = 𝛿𝑚𝑛 

{𝑓𝑛} is complete if any other function 
𝑔 in ℋ can be expressed as 

𝑔(𝑥) = ∑ 𝑐𝑛𝑓𝑛(𝑥)
∞
𝑛=1  where 𝑐𝑛 = ⟨𝑓𝑛|𝑔⟩ 

The adjoint  † is the same as taking 
the transpose of the complex 

conjugate. 
If 𝑓 and 𝑔 are discrete, use sums. 

Hermitian operators 
An operator Q̂ is 

Hermitian if and only if 
 

⟨𝑓|Q̂𝑓⟩ = ⟨Q̂𝑓|𝑓⟩ ∀ 𝑓 
 

Same as 
⟨𝑓|Q̂|𝑓⟩ = ⟨𝑓|Q̂†|𝑓⟩ ∀ 𝑓 

 

All operators 
representing observables 
are Hermitian, because 

⟨𝑄⟩ ∈ ℝ 
 ⇒ ⟨𝑄⟩ = ⟨𝑄⟩∗ 

⇒ ⟨𝑓|Q̂𝑓⟩ = ⟨Q̂𝑓|𝑓⟩ 
 

A Hermitian operator is 
equal to its adjoint (self-

adjoint) 
 

Q̂ = Q̂† 

 

Observable operator 
An operator whose eigenvalues 

represent outcomes of measurements  
 
 
 

 

Eigenvalue equation 
Q̂Ψ = 𝑞Ψ 

Ψ is an eigenfunction of Q̂, and 𝑞 is 
the corresponding eigenvalue. 

 

Completeness “axiom” 
The eigenfunctions of an observable 
operator are complete; meaning any 
function in ℋ can be expressed as a 

lin. comb. of them. 

The commutator of two operators Â and B̂ is 
the operator 

 

Ĉ = [Â, B̂] ≡ ÂB̂ − B̂Â 
 

Â and B̂ commute IFF Ĉ = 0 

State of Q.M. system and the wave function 
The state of a system |Ψ(𝑡)⟩ is a vector in ℋ, and can be expressed in different bases of 

eigenfunctions. The basis we almost always use is that of position: 
Ψ(𝐫, 𝑡) = ⟨𝐫|Ψ(𝑡)⟩ 

where |𝐫⟩ is the eigenfunction of �̂�, with eigenvalue 𝐫, and Ψ(𝐫, 𝑡) is the wave function. 

Notable commutators 
   [x̂, p̂𝑥] = 𝑖ℏ 

 

[�̂�, 𝐩] = 3𝑖ℏ [p̂, T̂] = 0 
 

[L̂𝑥, L̂𝑦] = 𝑖ℏL̂𝑧 
[L̂𝑦, L̂𝑧] = 𝑖ℏL̂𝑥 
[L̂𝑧, L̂𝑥] = 𝑖ℏL̂𝑦  

 

[Ŝ𝑥 , Ŝ𝑦] = 𝑖ℏŜ𝑧 
[Ŝ𝑦 , Ŝ𝑧] = 𝑖ℏŜ𝑥 
[Ŝ𝑧 , Ŝ𝑥] = 𝑖ℏŜ𝑦 

 

 
 
 
 
 

Probability 
𝑋 is a random variable 

if 𝑋 is discrete if 𝑋 is continuous 
 

〈𝑋〉 = Σ𝑛=1 
∞ 𝑥𝑛𝑝𝑋(𝑥𝑛) 

 

 

〈𝑋〉 = ∫
−∞

∞
𝑥𝑓𝑋(𝑥)𝑑𝑥 

 
 

〈𝑋2〉 = Σ𝑛=1
∞ 𝑥𝑛

2𝑝𝑋(𝑥𝑛) 
 

 

〈𝑋2〉 = ∫
−∞

∞
𝑥2𝑓𝑋(𝑥)𝑑𝑥 

 
 

Pr(𝑎 ≤ 𝑥 ≤ 𝑏)
= Σ𝑎≤𝑥𝑛≤𝑏 

 𝑝𝑋(𝑥𝑛) 

 

Pr(𝑎 ≤ 𝑥 ≤ 𝑏)

=  ∫𝑎
𝑏
𝑓
𝑋
(𝑥)𝑑𝑥 

 

V[𝑋] = 〈𝑋2〉 − 〈𝑋〉2  
 

𝜎𝑋 = √V[𝑋] = √〈𝑋2〉 − 〈𝑋〉2 
 
 

𝑝𝑋(𝑥) is the probability mass function (PMF) of 𝑋, 
𝑓𝑋(𝑥) is the probability density function (PDF) of 𝑋, 

⟨𝑋⟩ is the expectation value of 𝑋,  
𝑉[𝑋] is the variance, and 𝜎𝑋 the standard deviation. 

 

Operator identities and properties 
 

⟨𝑎|Â†|𝑏⟩ = ⟨𝑏|Â |𝑎⟩∗ 
 

Â|𝑎⟩ = ⟨𝑎|Â † 
 

 

(Â†)
†
= Â 

 

(𝛼Â)
†
= 𝛼∗Â† 

 

(Â B̂)
†
= B̂†Â† 
 

 

Ĉ = Â + B̂      ⇒    Ĉ|Ψ⟩ = Â|Ψ⟩ + B̂|Ψ⟩ 
 
 

Ĉ = Â B̂    ⇒     Ĉ|Ψ⟩ = Â (B̂|Ψ⟩) 
 

 
 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2/10     WAVE FUNCTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expectation value 
For an operator Q̂ representing an 

observable 𝑄 we have 
 

⟨𝑄⟩ = ⟨Ψ(𝑡)|Q̂|Ψ(𝑡)⟩          

             = ∫ Ψ(𝐫, 𝑡)∗ Q̂ Ψ(𝐫, 𝑡)𝑑𝐫
 

ℝ3 

 

Q.M. expectation values follow 
classical dynamics 

Note that 

⟨𝑄2⟩ = ∫ Ψ(𝐫, 𝑡)∗ Q̂2 Ψ(𝐫, 𝑡)𝑑𝐫
 

ℝ3 

 

Expectation value trick 

⟨𝐩⟩ = 𝑚
𝑑

𝑑𝑡
⟨𝐫⟩ 

 

Momentum-space 
Operators become: 

�̂� = 𝐩   and   �̂� = 𝑖ℏ∇𝑝 

∇𝑝=
𝜕

𝜕𝑝𝑥
+

𝜕

𝜕𝑝𝑦
+

𝜕

𝜕𝑝𝑧
 

General solution to TDSE (discrete sum) 
Given 𝑉 indep. of time, the general solution Ψ is 
a linear combination of separable solutions {𝜓𝑛}  

 

Ψ(𝐫, 𝑡) = ∑𝑐𝑛𝜓𝑛(𝐫)𝑒
−𝑖𝐸𝑛𝑡/ℏ

∞

𝑛=1

 

 

where |𝑐𝑛|2 is the probability that the measured 
energy is 𝐸𝑛, thus Σ𝑛|𝑐𝑛|2 = 1 

 

TDSE (Time dep. Schrödinger Equation) 
 

ĤΨ = ÊΨ 
 

which when written out becomes 

−
ℏ2

2𝑚
∇2Ψ+ 𝑉 Ψ =  𝑖ℏ

𝜕

𝜕𝑡
Ψ  

 

with Ψ =  Ψ(𝐫, 𝑡), and 𝑉 = 𝑉(𝐫, 𝑡) 
 

TISE (Time indep. Schrödinger Equation) 
If the potential is not a function of time, one can 

use separation of variables on Ψ: 
 

Ψ(𝐫, 𝑡) = 𝜓(𝐫)𝜙(𝑡) 
 

which, when put in the Schrödinger Equation, 
leads to the TISE: 

 

−
ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 = 𝐸𝜓     same as:     ĤΨ = 𝐸Ψ 

and 
 
 

𝜙(𝑡) = exp(−𝑖𝐸𝑡/ℏ) 
 

Properties of {𝜓𝑛} 
The infinite set of solutions to TISE {𝜓𝑛} has 

certain properties: 
 

1. If 𝑉 is symmetric, then the solutions are 
alternately even and odd with respect to 
the center of the well; 𝜓1 is even, 𝜓2 is odd 
and so on… 
 

 

2. As you go up in energy, each successive 
state has one more zero crossing; 𝜓1 has 
none, 𝜓2 has one, … 
 

 

3. They are mutually orthogonal: 

∫ 𝜓𝑚
∗ 𝜓𝑛𝑑𝐫 = 𝛿𝑚𝑛

 

ℝ3
 

 

 

4. The set is complete, meaning any other 
function 𝑓 can be expressed as a linear 
combination of {𝜓𝑛}: 

𝑓(𝐫) =∑ 𝑐𝑛𝜓𝑛(𝐫)
∞

𝑛=1 
 

 
 

Using the completeness and orthogonality 
of {𝜓𝑛} we have 

𝑐𝑛 = ∫ 𝜓𝑛
∗(𝐫)𝑓(𝐫)𝑑𝐫

 

ℝ3
 

 

Sometimes called “Fourier’s trick” 
Finding 𝒄𝒏 

Given initial wave function 

Ψ(𝐫, 0) = ∑ 𝑐𝑛𝜓𝑛(𝐫)
∞

𝑛=1
 

using Fourier’s trick, we get 

𝑐𝑛 = ∫ 𝜓𝑛
∗(𝐫)Ψ(𝐫, 0)𝑑𝐫

 

ℝ3
 

Stationary state (separable solution) 
State where all observables are indep. of 
time. This occurs when the probability 

density |Ψ(𝐫, 𝑡)|2 is indep. of time.  
 

Bound state 
𝐸 < 𝑉(±∞) 

 

Unbound state 
𝐸 > 𝑉(±∞) 

 
 

In real life, most 
𝑉 are 0 at ±∞ 

The wave function Ψ is the solution to the TDSE. It is 
the probability amplitude function of the system. We 

can derive the probability distribution of various 
observables from Ψ. 

Requirements of Ψ 
Ψ must be continuous and have a 

continuous derivative. 
 

Ψ must be square-integrable. 
 

The cumulative probability of Ψ must be 1 
on its domain (normalized): 

⟨Ψ(𝑡)|Ψ(𝑡)⟩ = ∫ |Ψ(𝐫, 𝑡)|2𝑑𝐫 = 1 
 

ℝ3
 

If discrete: ⟨Ψ(𝑡)|Ψ(𝑡)⟩ = Σ𝑛|𝑐𝑛|
2 = 1 

Spectrum 
Collection of all eigenvalues 𝑞 of 

an operator Q̂. If two or more 
linearly independent 

eigenfunctions Ψ share the same 
eigenvalue, the spectrum is 

degenerate. 

If the spectrum of Q̂ is discrete, then its 
eigenfunctions Ψ lie in ℋ and physically 

constitute realizable states. Its eigenvalues 
are real, and eigenfunctions belonging to 

distinct eigenvalues are orthonormal. 
 

If the spectrum of Q̂ is continuous, then its 
eigenfunctions Ψ are not normalizable, and 

thus not realizable states. Though a 
lin.comb. of them may be normalizable and 

thus physically realizable. 

Probability density (in pos. space) 

Pr(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ Ψ(𝑥, 𝑡)∗ Ψ(𝑥, 𝑡)𝑑𝑥
𝑏

𝑎

 

               = ∫ |Ψ(𝑥, 𝑡)|2𝑑𝑥
𝑏

𝑎

 

where Ψ(𝑥, 𝑡)∗ Ψ(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 is the 
PDF of Ψ  

 

Eulers formula 
𝑒𝑖𝜑 = cos(𝜑) + 𝑖 sin(𝜑) 

cos(𝜑) =
1

2
(𝑒𝑖𝜑 + 𝑒−𝑖𝜑) 

sin(𝜑) =
1

2𝑖
(𝑒𝑖𝜑 − 𝑒−𝑖𝜑) 

|𝑒𝑖𝜑| = 1 

Complex conjugate 
 (𝑎 + 𝑖𝑏)∗ = (𝑎 − 𝑖𝑏) 

(𝑒𝑖𝜑)∗ = 𝑒−𝑖𝜑   

Momentum-space ⟷ Position-space 

 Ψ(𝐫, 𝑡) = ⟨𝐫|Ψ(𝑡)⟩ = ∫⟨𝐫|𝐩⟩⟨𝐩|Ψ(𝑡)⟩𝑑𝐩
 

 

 

Ψ(𝐩, 𝑡) = ⟨𝐩|Ψ(𝑡)⟩ = ∫⟨𝐩|𝐫⟩⟨𝐫|Ψ(𝑡)⟩𝑑𝐫   
 

 

 

 
Modulus of complex number 

 |𝑎 + 𝑏𝑖| = √𝑎2 + 𝑏2 
 

 

Ψ = 𝑎 + 𝑖𝑏 ⇒ |Ψ|2 = 𝑎2 + 𝑏2 
Ψ = 𝑟𝑒𝑖𝜑 ⇒ |Ψ|2 = 𝑟2        

Eigenstates/Eigenfunctions and Eigenvalues 
When a observable 𝑄 is measured, then the system “collapses” from being in a discrete 

or continuous superposition of eigenstates/eigenfunctions to ONE 
eigenstate/eigenfunction. The result of the measurement is the eigenvalue related to 

that eigenstate/eigenfunction. Eigenstates/eigenfunctions and eigenvalues for a 
observable 𝑄 are found using the eigenvalue equation Q̂Ψ = 𝑞Ψ 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3/10     SOLUTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Infinite square well (1D) 

𝑉(𝑥) = {
0, 𝑥 ∈ [0, 𝐿] 

∞,      otherwise
 

 

TISE becomes: 
𝑑2𝜓

𝑑𝑥2
= −𝑘2𝜓, 𝑘 ≡

√2𝑚𝐸

ℏ
 

 

General solution to this is: 
 

𝜓(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 
 

Since 𝜓 must be 0 outside the well, 
continuity of 𝜓 means: 

 

𝜓(0) = 𝜓(𝑎) = 0 
 

⇒ 𝐵 = 0 and 𝑘 =
𝑛𝜋

𝐿
,   𝑛 ∈ ℤ+ 

 

Solving 𝑛𝜋
𝐿
=

√2𝑚𝐸

ℏ
 gives 

 

𝐸𝑛 =
ℏ2𝑘𝑛

2

2𝑚
=
𝜋2ℏ2

2𝑚𝐿2
𝑛2 

 

𝐴 can be found by normalizing 𝜓 
|𝐴|2 = 2/𝐿 ⇒ 𝐴 = √2/𝐿 

 

∴  𝜓𝑛(𝑥) = √2/𝐿 sin (
𝑛𝜋

𝐿
𝑥) 

Harmonic Oscillator (1D) 

𝑉(𝑥) =
1

2
𝑘𝑥2 =

1

2
𝑚𝜔2𝑥2     where   𝜔2 = 𝑘/𝑚 

 

Write TISE using the Hamiltonian expressed with 
the ladder operators: 

ℏ𝜔 (â+â− +
1

2
)𝜓 = 𝐸𝜓 

 

One cannot apply  â− forever. At the ground 
state, 𝜓0, we have â−𝜓0 = 0 which can be used to 

determine 𝜓0: 
 

𝜓0 = (
𝑚𝜔

𝜋ℏ
)
1/4

exp (−
𝑚𝜔

2ℏ
𝑥2) 

 

Which when plugged into TISE gives: 

𝐸0 =
1

2
ℏ𝜔 

 

By continuous application of â+ one finds that 
 

𝜓𝑛(𝑥) = 𝐴𝑛(â+)
𝑛𝜓0(𝑥) 

 

with energy 

𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
) 

 

One can use the exact action of the ladder 
operators to show that 𝐴𝑛 = 1/√𝑛! 

 

Putting it all together: 

𝜓𝑛(𝑥) = (
𝑚𝜔

𝜋ℏ
)
1/4 1

√2𝑛𝑛!
 𝐻𝑛(𝑥√𝑚𝜔/ℏ)𝑒

−
𝑚𝜔
2ℏ

𝑥2 

 

Ladder operators 

â± ≡
1

√2ℏ𝑚𝜔
(∓𝑖p̂ +𝑚𝜔x̂) 

 
 

 

The Hamiltonian can be written as 

Ĥ = ℏ𝜔 (â+â− +
1

2
) = ℏ𝜔 (â−â+ −

1

2
) 

 
 

[â+â−] = −1          [â−â+] = 1     
 

 

Exact actions of ladder operators: 
â+𝜓𝑛 = √𝑛 + 1 𝜓𝑛+1 

 

â−𝜓𝑛 = √𝑛 𝜓𝑛−1         
 

 

Eigenvalue equations: 
Ĥ (â−𝜓𝑛) = (𝐸𝑛 − ℏ𝜔)(â−𝜓𝑛) 
Ĥ (â+𝜓𝑛) = (𝐸𝑛 + ℏ𝜔)(â+𝜓𝑛) 

 

 

 

 

 

Physicist’s Hermite polynomials 

𝐻𝑛(𝑥) = (−1)
𝑛 𝑒𝑥

2 𝑑𝑛

𝑑𝑥𝑛
𝑒−𝑥

2
  

 

Free particle (1D) 
𝑉(𝑥) = 0 

 

TISE becomes: 
𝑑2𝜓

𝑑𝑥2
= −𝑘2𝜓, 𝑘 ≡

√2𝑚𝐸

ℏ
 

 

General solution to this is  
𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 

 

⇒ Ψ(𝑥, 𝑡) = 𝐴𝑒𝑖𝑘
(𝑥−

ℏ𝑘
2𝑚

𝑡) + 𝐵𝑒−𝑖𝑘
(𝑥+

ℏ𝑘
2𝑚

𝑡) 
 

Redefine 𝑘 ≡ ± √2𝑚𝐸

ℏ
 

 

⇒ Ψ(𝑥, 𝑡) = 𝐴𝑒
𝑖(𝑘𝑥−

ℏ𝑘
2

2𝑚
𝑡)

 
However, this is not correct. Because  

∫Ψ𝑘
∗Ψ𝑘𝑑𝑥 = |𝐴|2 ⋅ ∞ 

i.e. Ψ not normalizable. 

This means separable solutions 
(stationary states) do not represent 

physical states of free particles. 
Meaning: free particles do not have 

definite energy. 
 

General solution to TDSE is still a lin. 
comb. of separable solutions though, 

but it’s an integral now, not a sum: 
 

Ψ(𝑥, 𝑡) =
1

√2𝜋
∫ 𝑓(𝑘)𝑒

𝑖(𝑘𝑥−
ℏ𝑘2

2𝑚
𝑡)
𝑑𝑘

∞

−∞

 
 

Here the product 1/√2𝜋 𝑓(𝑘)𝑑𝑘 take 
the role of 𝑐𝑛. One can find 𝑓(𝑘) by 

 

𝑓(𝑘) =
1

√2𝜋 
∫ Ψ(𝑥, 0)𝑒−𝑖𝑘𝑥𝑑𝑥
∞

−∞

 
 

We say that Ψ carries a range of 𝑘 and 
energy values. Calling it a wave packet. 

 
 

 

 

Dirac delta function 

𝛿(𝑥) = {
0, 𝑥 ≠ 0
1, 𝑥 = 0

   and  ∫ 𝛿(𝑥)𝑑𝑥 = 1
∞

−∞
 

 

Kronecker-delta  
 

𝛿𝑚𝑛 = {
0,𝑚 ≠ 𝑛
1,𝑚 = 𝑛

   

 

Dirac-orthonormality 
 

⟨𝑥′′|�̂�|𝑥′⟩ = �̂�𝛿(𝑥′′ − 𝑥′) 

𝑥′′ and 𝑥′ are position 
eigenstates 

Infinite cube (3D) 

𝑉(𝐫) = {
       0, 𝑥, 𝑦, 𝑧 ∈ [0, 𝐿] 

∞, otherwise
 

 

𝜓𝑎,𝑏,𝑐(𝐫) = (
2

𝐿
)
3/2

sin (
𝑎𝜋

𝐿
𝑥) sin (

𝑏𝜋

𝐿
𝑦) sin (

𝑐𝜋

𝐿
𝑧) 

 

𝐸𝑎,𝑏,𝑐 =
𝜋2ℏ2

2𝑚𝐿2
(𝑎2 + 𝑏2 + 𝑐2) 
 

where 𝑎, 𝑏, 𝑐 ∈ 1,2,3, … 

Harmonic Oscillator (3D) 

𝑉(𝐫) =
1

2
𝑘𝐫2 =

1

2
𝑚𝜔2𝐫2  

 

𝜓𝑎,𝑏,𝑐(𝐫) = 𝜓𝑎(𝑥)𝜓𝑏(𝑦)𝜓𝑐(𝑧) 
 

𝐸𝑎,𝑏,𝑐 = ℏ𝜔(𝑎 + 𝑏 + 𝑐 + 3/2) 
 

where 𝑎, 𝑏, 𝑐 = 0,1,2,3, … 
and 𝜓𝑛 is solutions to 1D H.O. 

 

 

 

 

Degeneracy 
How many states with the same energy. For Infinite Square well, and 1D-Harmonic 

Oscillator, a specific state is indicated by a specific value of 𝑛.  

For example: 𝑛 = 1, 2, 3, 4, etc. 

 For the 3D counterparts, a specific state is indicated by a specific (𝑎, 𝑏, 𝑐) 
combination. 

For example: (𝑎, 𝑏, 𝑐) = (1,1,2), (2,1,1), (1,2,3), etc. 
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Spherical Laplacian 

∇2=
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕

𝜕𝜃
) +

1

𝑟2 sin2 𝜃
(
𝜕2

𝜕𝜙2
) 

 

Spherical TISE 

−
ℏ2

2𝑚
[
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝜓

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝜓

𝜕𝜃
) +

1

𝑟2 sin2 𝜃
(
𝜕2𝜓

𝜕𝜙2
)] + 𝑉𝜓 = 𝐸𝜓 

Spherical ↔ Cartesian 
𝑥 = 𝑟 sin 𝜃 cos𝜙    𝑦 = 𝑟 sin 𝜃 sin 𝜙   𝑧 = 𝑟 cos 𝜃 

 

𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙 

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2       cos 𝜃 = 𝑧/𝑟           tan𝜙 = 𝑦/𝑥 
 

𝑟 is distance to origin, 𝜃 ∈ [0, 𝜋] is polar angle, and 𝜙 ∈ [0, 2𝜋] is azimuth angle. 
 

Radial and Angular equations 
Assuming 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙), and 𝑉 = 𝑉(𝑟), then from TISE we get 

 

The radial equation: 
 

−
ℏ2

2𝑚

𝑑2𝑢

𝑑𝑟2
+ [𝑉 +

ℏ2

2𝑚

ℓ(ℓ + 1)

𝑟2
] 𝑢 = 𝐸𝑢 

 

where 𝑢(𝑟) = 𝑟𝑅(𝑟), and ℓ(ℓ + 1) is a separation constant 
 

And the angular equation: 
 

sin 𝜃
𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑌

𝜕𝜃
) +

𝜕2𝑌

𝜕𝜃2
= − ℓ(ℓ + 1) sin2 𝜃  𝑌 

 
Radial equation determines the dependence of 𝜓 on 𝑟, and the angular 

equation determines the dependence of 𝜓 on 𝜃 and 𝜙. 

 

 

Solving radial equation 
The radial equation is 

identical to TISE in 1D, with 
effective potential 

 

𝑉eff = 𝑉 +
ℏ2

2𝑚

ℓ(ℓ + 1)
𝑟2

 
 

To solve the radial 
equation for 𝑅, we need an 

expression for 𝑉 

Legendre Polynomial 

𝑃ℓ(𝑥) =
1

2ℓℓ!
(
𝑑

𝑑𝑥
)
ℓ

(𝑥2 − 1)ℓ 

 

Associated Legendre Function (𝒎 ≥ 𝟎) 

𝑃ℓ
𝑚(𝑥) = (−1)𝑚(1 − 𝑥2)𝑚/2  (

𝑑

𝑑𝑥
)
𝑚

𝑃ℓ(𝑥) 

 
 

Associated Legendre Function (𝒎 < 𝟎) 

𝑃ℓ
−𝑚(𝑥) = (−1)𝑚

(ℓ − 𝑚)!

(ℓ + 𝑚)!
𝑃ℓ
𝑚(𝑥) 

 
 

Solution to angular equation 
 

𝑌ℓ
𝑚 = √

(2ℓ + 1)

4𝜋

(ℓ −𝑚)!

(ℓ +𝑚)!
𝑒𝑖𝑚𝜙𝑃ℓ

𝑚(cos 𝜃) 

 
 

where 𝑌ℓ
𝑚 = 𝑌ℓ

𝑚(𝜃, 𝜙). This is called the 
spherical harmonics. 

 
 

This is assuming we can write  
𝑌(𝜃, 𝜙) = Θ(θ)Φ(ϕ) 

Physical interpretations of 𝓵, 𝒏, and 𝒎 (not the mass) 
ℓ ∈ [0, 𝑛 − 1] is the angular momentum, and 𝑚 ∈ [−ℓ, ℓ] is the magnetic quantum number. The 

principal quantum number 𝑛 = 1,2,3, … represents the energy level. Note Δℓ = ±1 and Δ𝑚 = −1,0,1.  
ℓ(ℓ + 1) and 𝑚2 appear as separation constants when solving radial and angular eqs. 

  

Bohr radius 

𝑎𝜇 =
4𝜋𝜖0ℏ

2

𝜇𝑒2
 

Associated Laguerre Polynomials 

𝐿𝑞
𝑝(𝑥) =

𝑥−𝑝𝑒𝑥

𝑞!
(
𝑑

𝑑𝑥
)
𝑞

(𝑒−𝑥𝑥𝑝+𝑞) 

 
 

Coulomb’s Law 

𝑉(𝑟) = −
1

4𝜋𝜀0

𝑍 𝑒2

𝑟
 

The Bohr Formula (allowed energies of Hydrogen-like atom) 

𝐸𝑛 = − [
𝑍2𝜇𝑒4

32𝜋2𝜀0
2ℏ2
]
1

𝑛2
≈ −13.6eV ⋅

𝑍2

𝑛2
  

Hydrogen-like atoms 
Systems consisting of ONE electron and 𝑍 protons centered at the origin. Allowed energies follow the 

Bohr formula, and the potential of the electron is given by Coulomb’s law. 
.. 

The wave function 
 

𝜓𝑛,ℓ,𝑚(𝑟, 𝜃, 𝜙) = 𝑅𝑛,ℓ(𝑟)𝑌ℓ
𝑚(𝜃, 𝜙) 

 

where𝑅𝑛,ℓ(𝑟) is the radial wave function (solution to radial equation with Coloumb’s potential) 
 

𝑅𝑛,ℓ(𝑟) = √(
2𝑍

𝑛𝑎𝜇
)

3
(𝑛 − ℓ − 1)!

2𝑛(𝑛 + ℓ)!
(
2𝑍𝑟

𝑛𝑎𝜇
)

ℓ

𝑒
−
𝑍𝑟

𝑛𝑎𝜇  𝐿𝑛−ℓ−1
2ℓ+1 (

2𝑍

𝑛𝑎𝜇
𝑟) 

 

Reduced mass 
 

𝜇 =
𝑚𝑒𝑍𝑚𝑝

𝑚𝑒 + 𝑍𝑚𝑝

 

 
 
 

 

 

Hamiltonian for Helium-like atoms 
Two-electron Hamiltonian for helium-like atoms is 

 

Ĥ = Ĥ1 + Ĥ𝟐 + 𝑉𝑒𝑒 
 

where: 
 

Ĥ1 = −
ℏ2

2𝑚
∇𝒓1
2 −

𝑍𝑒2

4𝜋𝜖0𝑟1
         Ĥ2 = −

ℏ2

2𝑚
∇𝒓2
2 −

𝑍𝑒2

4𝜋𝜖0𝑟2
 

 

𝑉𝑒𝑒 =
𝑒𝟐

4𝜋𝜖0

1

|𝐫1 − 𝐫2|
 

 

Where 𝐫1 and  𝐫2 is the distance vectors of electron 1 
and 2 with respect to the nucleus (static at origin), and 

𝑉𝑒𝑒 is the electron-electron repulsion. 
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Wavefunction as a column vector 
The wavefunction Ψ(𝐫, 𝑡) is the same as a column-

vector |Ψ(𝑡)⟩ in ℋ in the position basis 

|Ψ(𝑡)⟩ = ∫ Ψ(𝐫, 𝑡) |𝐫⟩𝑑𝐫
 

ℝ3
 

Where {|𝐫⟩} is the position basis spanning ℋ. 
 

Another basis is that of energy, which unlike 
position is discrete 

|Ψ(𝑡)⟩ = ∑𝑐𝑛(𝑡) |𝐸𝑛⟩

∞

𝑛=1

 

Where {|𝐸𝑛⟩} is the energy basis spanning ℋ. 
 
 
 

Operator as matrix 
An operator Q̂ acting on a wave function Ψ(𝑥, 𝑡), 

is the same as that operator’s matrix 
representation 𝐐 (in the position basis in this 

case), acting on the vector |Ψ(𝑡)⟩ 
 
 
 
 

Visualizing function as a column vector 
This is not completely mathematically rigorous, but 

gives an idea of how a function can be represented as a 
vector 

 

Ψ(𝑥, 𝑡) represented as 

(

 
 
 
 

⋮
Ψ(−2𝜖, 𝑡)
Ψ(−𝜖, 𝑡)

Ψ(0, 𝑡)

Ψ(𝜖, 𝑡)

Ψ(2𝜖, 𝑡)
⋮ )

 
 
 
 

 where 𝜖 → 0 

 

In other words, you can think of the ket |Ψ(𝑡)⟩ as 
holding all possible values of Ψ through time, and 

which can be represented in a certain basis. 
 

Ladder operator matrices (H.O.) 
â+|𝑛⟩ = √𝑛 + 1 |𝑛 + 1⟩ ⇒ ⟨𝑚|â+|𝑛⟩ = √𝑛 + 1 𝛿𝑚,𝑛+1 

⇒ â+ → 𝐚+ =

(

 
 

0 0 0 ⋯

√1 0 0 ⋯
0
0
⋮

√2
0
⋮

0 ⋯

√3 ⋯ 
⋮ ⋱ )

 
 

 

 

â−|𝑛⟩ = √𝑛 |𝑛 − 1⟩ ⇒ ⟨𝑚|â−|𝑛⟩ = √𝑛 𝛿𝑚,𝑛−1 

⇒ â− → 𝐚− = (

0 √1 0 0 ⋯
0 0 √2 0 ⋯
0
⋮

0
⋮

0 √3 ⋯
⋮ ⋮ ⋱

) 

Where the basis {|𝑛⟩} is such that  

|1⟩ = (

1
0
0
⋮

),    |2⟩ = (

0
1
0
⋮

),    |3⟩ = (

0
0
1
⋮

), etc. 

and ⟨𝑚| = |𝑛⟩† ⇒ ⟨𝑚|𝑛⟩ = 𝛿𝑚𝑛 
 

Hamiltonian operator matrix (H.O.) 

Ĥ = ℏ𝜔 (â+â− +
1

2
) ⇒  𝐇 = ⟨𝑚|ℏ𝜔 (â+â− +

1

2
) |𝑛⟩ 

⇒ Ĥ → 𝐇 = ℏ𝜔(

1/2 0 0 ⋯
0 3/2 0 ⋯
0
⋮

0
⋮

5/2 ⋯
⋮ ⋱

) 

  

The eigenvalues of a diagonal matrix are the values 
along the diagonal, which in this case we see 
matches the eigen energies for the 1D H.O. 

 

Of course, using the same basis {|𝑛⟩} as above 

Four ways to attack a Q.M problem 
1. Choose a space, like the position space 

( Ψ(𝐫, 𝑡) = ⟨𝐫|Ψ(𝑡)⟩ ), and solve TDSE 
 

2. Define operators which allow to take or add 
energy (such as the ladder operators in H.O.) 

 

3. Chose basis vectors, and compute the 
eigenvalues of the 𝐇 matrix (Hamiltonian 
matrix) 

 

4. Use an approximation method. 
 
 

Common eigenfunctions 
 [Â, B̂] = 0 ⇔ they have common eigenfunctions: 

 
 

Â𝑓𝑛 = 𝑎𝑛𝑓𝑛 
 

B̂𝑓𝑛 = 𝑏𝑛𝑓𝑛 
 
 
 

                      UNCERTAINTY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalized Ehrenfest theorem 
𝑑

𝑑𝑡
⟨𝑄⟩ =

𝑖

ℏ
⟨Ψ|[Ĥ, Q̂]|Ψ⟩  + ⟨

𝜕Q̂

𝜕𝑡
⟩ 

Energy-time uncertainty principle 
Δ𝐸Δ𝑡 ≥ ℏ/2 

Where Δ𝐸 ≡ 𝜎𝐻 and Δ𝑡 ≡ 𝜎𝑄/ |
𝑑

𝑑𝑡
⟨𝑄⟩|. 

Δ𝑡 represents the amount of time it takes the expectation value of 
𝑄 to change by one standard deviation. There is no time operator. 

If [Ĥ, Q̂] = 0 and  
⟨𝜕Q̂/𝜕𝑡⟩ = 0, then ⟨𝑄⟩ is 
constant, i.e. conserved. 

property. 
Results from Ehrenfest theorem 

⟨𝑝⟩ = 𝑚
𝑑

𝑑𝑡
⟨𝑥⟩      

𝑑

𝑑𝑡
⟨𝑝⟩ = − ⟨

𝑑𝑉

𝑑𝑥
⟩ 

 

Note that ⟨𝑑𝑉
𝑑𝑥
⟩ ≠

𝑑

𝑑𝑡
⟨𝑉⟩ 

Generalized uncertainty 
principle 

𝜎𝐴
 𝜎𝐵

 ≥ 1/2 ⋅ | ⟨Ψ|[Â, B̂]|Ψ⟩ | 

Standard deviation 
𝜎𝑄 = √〈𝑄

2〉 − 〈𝑄〉2 

 

Variance 

𝜎𝑄
2 = 〈𝑄2〉 − 〈𝑄〉2 = ⟨(Q̂ − ⟨𝑄⟩)

2
⟩ 

 

Minimum uncertainty 
𝜎𝑥𝜎𝑝 = ℏ/2 

For the one-dimensional Harmonic Oscillator, this happens at the 
ground state. 

 

Consequence of the uncertainty principle in 1D 
For all 1D systems, we have 𝐸𝑔 > −𝑉0. Meaning the ground state 
energy is always greater than the minimum potential. This is a 

consequence of the uncertainty principle. 

The uncertainty 
principle 
𝜎𝑥𝜎𝑝 ≥ ℏ/2  

Ground state energy 
For an arbitrary normalized state Ψ, we have 

 

𝐸𝑔 ≤ ⟨Ψ|Ĥ|Ψ⟩ = ⟨𝐻⟩ 
 

where 𝐸𝑔 is the ground state energy. 
 

If Ψ is not normalized, then 𝐸𝑔 ≤
⟨Ψ|Ĥ|Ψ⟩

⟨Ψ|Ψ⟩
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Angular momentum operators 
L̂𝑥 = 𝑦p̂𝑧 − 𝑧p̂𝑦          L̂𝑦 = 𝑧p̂𝑥 − 𝑥p̂𝑧           L̂𝑧 = 𝑥p̂𝑦 − 𝑦p̂𝑥 

 

   L̂2 = L̂𝑥
2 + L̂𝑦

2 + L̂𝑧
2  

 

Three-dimension Levi-Civita symbol 

𝜀𝑖𝑗𝑘 = {

−1  if (𝑖, 𝑗, 𝑘) is (𝑧, 𝑦, 𝑥), (𝑥, 𝑧, 𝑦), or (𝑦, 𝑥, 𝑧)

0   if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖                           

  1  if (𝑖, 𝑗, 𝑘) is (𝑥, 𝑦, 𝑧), (𝑦, 𝑧, 𝑥), or (𝑧, 𝑥, 𝑦)
 

Angular momentum commutators 
[L̂𝑥, L̂𝑦] = 𝑖ℏL̂𝑧              [L̂𝑦, L̂𝑧] = 𝑖ℏL̂𝑥           [L̂𝑧, L̂𝑥] = 𝑖ℏL̂𝑦 

 

[L̂2, L̂𝑘] = 0 for 𝑘 = 𝑥, 𝑦, 𝑧 
 

 

Generally: 
[L̂𝑖 , L̂𝑗] = 𝑖ℏ 𝜀𝑖𝑗𝑘  L̂𝑘 

 

Angular momentum uncertainty 

𝜎𝐿𝑖𝜎𝐿𝑗 ≥
ℏ

2
 |⟨𝐿𝑘⟩| | 𝜀𝑖𝑗𝑘| 

 

i.e., if for example 𝐿𝑧 is well known, then 𝐿𝑥 and 𝐿𝑦 are not. 

Angular momentum ladder operator 
L̂± = L̂𝑥 ± 𝑖L̂𝑦 

 

A useful relation: L̂±L̂∓ = L̂2 − L̂𝑧2 ± ℏL̂𝑧 

Angular momentum operators (spherical) 

L̂𝑥 = −𝑖ℏ [−sin(𝜙)
𝜕

𝜕𝜃
− cos(𝜙) cos(𝜃)

𝜕

𝜕𝜙
] 

L̂𝑦 = −𝑖ℏ [cos(𝜙)
𝜕

𝜕𝜃
− sin(𝜙) cos(𝜃)

𝜕

𝜕𝜙
]     

L̂𝑧 = −𝑖ℏ
𝜕

𝜕𝜙
                                                             

 

Hamiltonian using angular momentum 

Ĥ =
1

2𝑚𝑟2
[−ℏ2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) + 𝐿2] + 𝑉  

 

Angular momentum eigen equations 
Using angular momentum ladder operator, one can show 

 

   L̂2𝑓ℓ
𝑚 = ℏ2ℓ(ℓ + 1)𝑓ℓ

𝑚    and     L̂𝑧𝑓ℓ
𝑚 = ℏ𝑚𝑓ℓ

𝑚           
 

Where the eigen function 𝑓ℓ
𝑚 happens to be the spherical 

harmonics 𝑌ℓ
𝑚 . Some also represent 𝑓ℓ

𝑚 as |ℓ 𝑚⟩. 

Spin 
An intrinsic angular momentum carried by elementary 

particles; somewhat analogous to classical spin. 
 

Spin 1/2 
Particles with 𝑠 = 1/2. There are only two spin eigenstates: 

Spin up: |↑⟩ = |𝑠 𝑚𝑠⟩ = |
1

2
 1
2
⟩ 

    Spin down: |↓⟩ =  |𝑠 𝑚𝑠⟩ = |
1

2
 (−

1

2
)⟩ 

 

Spin-1/2 operators 

�̂� =
ℏ

2
𝛔 

(𝛔 = vector whose components are the Pauli matrices) 

 

Pauli matrices 

𝜎𝑥 = (
0 1
1 0

)           𝜎𝑦 = (
0 −𝑖
𝑖 0

)         𝜎𝑧 = (
1 0
0 −1

) 

 

Spin commutators 
[Ŝ𝑥, Ŝ𝑦] = 𝑖ℏŜ𝑧              [Ŝ𝑦 , Ŝ𝑧] = 𝑖ℏŜ𝑥           [S𝑧 , Ŝ𝑥] = 𝑖ℏŜ𝑦 

 

NB: Same relations as with angular momentum operators! 
 

 

Spin eigen equations 
Using the spin ladder operator, one can show 

 

   Ŝ2|𝑠 𝑚𝑠⟩ = ℏ2𝑠(𝑠 + 1)|𝑠 𝑚𝑠⟩   &     Ŝ𝑧|𝑠 𝑚𝑠⟩  = ℏ𝑚𝑠|𝑠 𝑚𝑠⟩  
 

Unlike ang. mom., |𝑠 𝑚𝑠⟩ is not the spherical harmonics, 
thus no need to omit half-integers 𝑠 and 𝑚𝑠 values: 

 

𝑠 = 0,
1

2
, 1,

3

2
, …       𝑚𝑠 = −𝑠,−𝑠 + 1,… , 𝑠 − 1, 𝑠 

 

 

Spin ladder operator 
Ŝ± = Ŝ𝑥 ± 𝑖Ŝ𝑦  

Ŝ− = ℏ (
0 0

1 0
)          Ŝ+ = ℏ (

0 1

0 0
)    ← acts on spinors 

 

Spinors for spin-1/2 particles 
A particles general state can be represented by a 2 × 1 matrix 

called a spinor: 

|𝜓⟩ = (
𝑎
𝑏
) = 𝑎 (

1
0
) + 𝑏 (

0
1
) 

where (1
0
) representing spin up (↑) 

        and (0
1
) representing spin down (↓) 

Hamiltonian in mag. field. using spin 
For particle in uniform field magnetic field 𝐁 = 𝐵0𝐞𝑧 

 

Ĥ = −𝛾𝐵0Ŝ𝑧 = −𝛼0 (
1 0
0 −1

) 

where 𝛼0 = 𝛾𝐵0ℏ/2 
 

Spin expectation value 
State of a particle expressed with spin 

|Ψ(𝑡)⟩ = 𝑎 (
1
0
) 𝑒−𝑖𝐸↑𝑡/ℏ + 𝑏 (

0
1
) 𝑒−𝑖𝐸↓𝑡/ℏ 

  where 𝐸↑ = −𝛼0 =  −𝛾𝐵0ℏ/2 
and 𝐸↓ = 𝛼0 =  𝛾𝐵0ℏ/2 

 

This state can be written as a spinor 
 

|Ψ(𝑡)⟩ = ( 𝑎𝑒
𝑖𝛾𝐵0𝑡/2

𝑏𝑒−𝑖𝛾𝐵0𝑡/2
) 

 

⇒ ⟨Ψ(𝑡)| = (𝑎∗𝑒−𝑖𝛾𝐵0𝑡/2 𝑏∗𝑒𝑖𝛾𝐵0𝑡/2) 
 

Which can be used to find the expectation value: 
 

⟨𝑆𝑘⟩ = ⟨Ψ(𝑡)|Ŝ𝑘|Ψ(𝑡)⟩ =
ℏ

2
⟨Ψ(𝑡)|𝜎𝑘|Ψ(𝑡)⟩ 

 
 

For 𝑆𝑧 it becomes: 
 

⟨𝑆𝑧⟩ =
ℏ

2
(𝑎∗𝑎 − 𝑏∗𝑏) =

ℏ

2
cos(𝜆) 

 
 
 
 
 
 
 

For 𝑆𝑥 it becomes: 

⟨𝑆𝑥⟩ =
ℏ

2
(𝑎∗𝑏𝑒−𝑖𝛾𝐵0𝑡 + 𝑏∗𝑎𝑒𝑖𝛾𝐵0𝑡) 
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Total angular momentum operators 
Ĵ𝑘 = L̂𝑘 + Ŝ𝑘 ,   𝑘 = 𝑥, 𝑦, 𝑧 

 

 
Total angular momentum commutators 

[Ĵ𝑥 , Ĵ𝑦] = 𝑖ℏĴ𝑧              [Ĵ𝑦 , Ĵ𝑧] = 𝑖ℏĴ𝑥           [Ĵ𝑧, Ĵ𝑥] = 𝑖ℏĴ𝑦 
 

NB: Same relations as with angular momentum operators! 
 

 

 
Total angular momentum ladder operator 

Ĵ± = Ĵ𝑥 ± 𝑖Ĵ𝑦 
 

Ĵ±|𝑗 𝑚𝑗⟩ = ℏ√𝑗(𝑗 + 1) − 𝑚𝑗(𝑚𝑗 ± 1) |𝑗 (𝑚𝑗 ± 1)⟩ 

Total angular momentum operator matrices 
 

Ĵ𝑥 =
1

2
(Ĵ++ Ĵ−) 

Ĵ𝑦 =
1

2𝑖
(Ĵ+− Ĵ−) 

Ĵ𝑧 = ℏ(
𝑗 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝑗

) 

A matrix with zero everywhere except along the diagonal, 
where it starts at 𝑗 and moves down with integer steps to −𝑗 

 

Total angular momentum eigen equations 
 

   Ĵ2|𝑗 𝑚𝑗⟩ = ℏ2𝑗(𝑗 + 1)|𝑗 𝑚𝑗⟩    and       Ĵ𝑧|𝑗 𝑚𝑗⟩  = ℏ𝑚𝑗|𝑗 𝑚𝑗⟩      

 

|ℓ − 𝑠| ≤ 𝑗 ≤ ℓ + 𝑠 

                          TWO PARTICLES and TOTAL SPIN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two spin-1/2 particles 
Consider a system with two spin-1/2 particles (e.g. 

proton and electron in Hydrogen ground state). 
Measured on a given axis (usually the 𝑧-axzs), each 

particle can be either spin up ↑, or spin down ↓, giving 
us four basis states: 

 

|↑↑⟩,     |↑↓⟩,     |↓↑⟩,     |↓↓⟩, 
 
 

|↑↑⟩ and |↓↓⟩ are aligned in 𝑧-direction 
1

√2
(|↑↓⟩ + |↓↑⟩) is aligned in 𝑥 or 𝑦 direction 

 

Total spin here is 𝑠 = 1 when aligned, thus: 
 

(𝐭𝐫𝐢𝐩𝐥𝐞𝐭 𝐬𝐭𝐚𝐭𝐞)  𝑠 = 1  

{
 

 
 |↑↑⟩

1

√2
(|↑↓⟩ + |↓↑⟩)

 |↓↓⟩

 

  
1

√2
(|↑↓⟩ − |↓↑⟩)

 
 is not aligned in any direction, this 𝑠 = 0 

(𝐬𝐢𝐧𝐠𝐥𝐞𝐭 𝐬𝐭𝐚𝐭𝐞)  𝑠 = 0 {

  
1

√2
(|↑↓⟩ − |↓↑⟩)

 
 

 

Addition of spin angular momentum 
Particle 1 has spin 𝑠1 and 𝑚1, represented by the 

eigenstate |𝑠1 𝑚1〉, likewise for a second particle in 
eigenstate |𝑠2 𝑚2⟩. The composite state is denoted 

by |𝑠1 𝑠2 𝑚1 𝑚2⟩.  The eigenequations become: 
 

Ŝ1
2|𝑠1 𝑠2 𝑚1 𝑚2⟩ = 𝑠1(𝑠1 + 1)ℏ

2|𝑠1 𝑠2 𝑚1 𝑚2⟩ 
Ŝ2
2|𝑠1 𝑠2 𝑚1 𝑚2⟩ = 𝑠2(𝑠2 + 1)ℏ

2|𝑠1 𝑠2 𝑚1 𝑚2⟩ 
Ŝ1𝑧
 |𝑠1 𝑠2 𝑚1 𝑚2⟩ = 𝑚1ℏ|𝑠1 𝑠2 𝑚1 𝑚2⟩                
Ŝ2𝑧
 |𝑠1 𝑠2 𝑚1 𝑚2⟩ = 𝑚2ℏ|𝑠1 𝑠2 𝑚1 𝑚2⟩                

 

What is the total spin angular momentum? 
𝐒 = 𝐒1 + 𝐒2 

Same as asking: what is the net spin 𝑠, and what is 
the 𝑧 component 𝑚𝑠? 

 

 

 

The value of 𝑚𝑠 is trivial 
Ŝ𝑧|𝑠1 𝑠2 𝑚1 𝑚2⟩ =  (Ŝ1𝑧

 + Ŝ2𝑧
 )|𝑠1 𝑠2 𝑚1 𝑚2⟩ 

⇒ ℏ𝑚 = ℏ(𝑚1 +𝑚2) 
 

𝑚𝑠 = 𝑚1 +𝑚2 
 
 
 

Regarding the net spin 𝑠, the answer is that you get 
every spin from 𝑠1 + 𝑠2, down to 𝑠1 − 𝑠2 in integer 

steps (assuming 𝑠1 > 𝑠2): 
 
 

𝑠 = (𝑠1 + 𝑠2), (𝑠1 + 𝑠2 − 1), (𝑠1 + 𝑠2 − 2)… , (𝑠1 − 𝑠2) 
 

 

Highest spin when they are parallel, lowest and 
antiparallel. 

 
 

QUANTUM NUMBERS 

 

 

 

 

 

 Name Range Usage 
𝑛 Principle [1,∞)  𝐸𝑛 
ℓ Azimuthal [0, 𝑛 − 1]  𝐿 = √ℓ(ℓ + 1)ℏ  
𝑚 Magnetic [−ℓ, ℓ]   𝐿𝑧 = 𝑚ℏ  
𝑠 Spin Int. and Half-int. 𝑆 = √𝑠(𝑠 + 1)ℏ 
𝑚𝑠 Spin magnetic [−𝑠, 𝑠]  𝑆𝑧 = 𝑚𝑠ℏ  
𝑗 Tot. ang. moment. [|ℓ − 𝑠|,ℓ + 𝑠]  𝐽 = √𝑗(𝑗 + 1)ℏ  
𝑚𝑗 Tot. ang. moment. proj. [−𝑗, 𝑗] 𝐽𝑧 = 𝑚𝑗ℏ  

 

All having integer steps within their range 

Bosons (e.g. gluon and photon) have integer spins 
 

Fermions (e.g. quarks, muons, electron, neutrino) have 
half-integer spin 

Two particle system (no interaction) 
 

𝜓(1,2) = 𝜓𝑎(1)𝜓𝑏(2) 
 

Where 1, 2 represent all coordinates, spin, etc. of particle 1 
and 2 respectively. The indexes 𝑎 and 𝑏 represent states. 

 

If 𝑎 = 𝑏 then 𝜓(1,2) = 𝜓(2,1) else 𝜓(1,2) ≠ 𝜓(2,1) 
 

Bosons: 

𝜓𝐵(1,2) =
1

√2
[𝜓𝑎(1)𝜓𝑏(2) + 𝜓𝑎(2)𝜓𝑏(1)] 

Fermions: 

𝜓𝐹(1,2) =
1

√2
[𝜓𝑎(1)𝜓𝑏(2) − 𝜓𝑎(2)𝜓𝑏(1)] 

 

If 𝑎 = 𝑏 then 𝜓𝐹(1,2) = 0 ⇒ Two fermions cannot be in 
the same state (Pauli exclusion principle) 
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Nondegenerate Perturbation (time indep.) 
Suppose the TISE cannot be solved exactly 

Ĥ|𝜓𝑛⟩ = 𝐸𝑛|𝜓𝑛⟩ 
 

To approximate a solution rewrite Ĥ so the TISE becomes 
(Ĥ0 + Ĥ1)|𝜓𝑛⟩ = 𝐸𝑛|𝜓𝑛⟩ 

 

where Ĥ1 is a small disturbance/perturbation, and 
Ĥ0|𝜙𝑛

0⟩ = 𝜀𝑛
0|𝜙𝑛

0⟩ 
 

has known analytical solutions 𝜀𝑛0 and 𝜙𝑛0. Where there is 
no degeneracy. 

 

A 1st order approximation of the wave function and the 
energy can be expressed as: 

 

|𝜓𝑛⟩ ≃ |𝜙𝑛
0⟩ +∑

⟨𝜙𝑚
0 |Ĥ1|𝜙𝑛

0⟩

𝜀𝑛
0 − 𝜀𝑚

0

 

𝑚≠𝑛
|𝜙𝑚

0 ⟩ 
 

𝐸𝑛 ≃ 𝜀𝑛
0 + ⟨𝜙𝑛

0|Ĥ1|𝜙𝑛
0⟩ 

 
______________________________________________________________ 

Note! Ĥ1 should be relatively small, i.e., 
|⟨𝜙𝑚

0 |Ĥ1|𝜙𝑛
0⟩| ≪ |𝜀𝑛

0 − 𝜀𝑚
0 | 

 

Degenerate Perturbation (time indep.) 
If 𝜀𝑛0 of Ĥ0 has degeneracy 𝑔; then there exists 𝑔 

orthonormal solutions 𝑋𝑖
0, 𝑖 = 1,2,3, … , 𝑔 of the equation 

 

Ĥ0𝑋𝑖
0 = 𝜀𝑛

0𝑋𝑖
0 

 

Thus, by linear algebra, we can write  
 

𝜙𝑛
0 =∑ 𝑐𝑖

𝑔

𝑖=1
𝑋𝑖
0 

 

Where {𝑐𝑖} are found by the 𝑔-number of equations 
 

∑ (𝐻𝑗𝑖 − 𝜀𝑛
1𝛿𝑗𝑖)𝑐𝑖 = 0

𝑔

𝑖=1
,      𝑗 = 1,2,3, … 𝑔 

 

where 𝐻𝑗𝑖 = ⟨𝑋𝑗
0|Ĥ1|𝑋𝑖

0⟩   and   𝜀𝑛1 = ⟨𝜙𝑛0|Ĥ1|𝜙𝑛0⟩ 
 

The approximations become 

|𝜓𝑛⟩ ≃ 𝜙𝑛
0 =∑ 𝑐𝑖

𝑔

𝑖=1
𝑋𝑖
0 

 

𝐸𝑛 ≃ 𝜀𝑛
0 + 𝜀𝑛

1 
______________________________________________________________ 

Note! If 𝐻𝑗𝑖 = 𝐻𝑗𝑖𝛿𝑖𝑗 then 𝜀𝑛1=𝜀𝑖
1 = ⟨𝑋𝑖

0|Ĥ1|𝑋𝑖
0⟩    

 𝑖 = 1,2,3, … , 𝑔 

 

Variational Principle (Helium Ground State) 
The Hamiltonian for Helium (𝑍 = 2), is not possible to 
solve exactly because of the 𝑉𝑒𝑒 term. We ignore the 
term, and the exact solution to TISE with Hamiltonian 

Ĥ = Ĥ1 + Ĥ𝟐 becomes 
 

Ψ0(𝐫1, 𝐫2) = 𝜓100(𝐫1)𝜓100(𝐫2) =
𝑍3

𝜋𝑎0
3 exp (−

𝑍

𝑎0
[𝑟1 + 𝑟2]) 

with 𝑍 = 2 
We create a trial wavefunction  

𝜙(𝐫1, 𝐫2)
𝛼3

𝜋𝑎0
3 exp (−

𝛼

𝑎0
[𝑟1 + 𝑟2]) 

where 𝛼 is a variational parameter. 
We have  

𝐸𝑔 ≤ 𝐸(𝛼) = ⟨𝜙|Ĥ|𝜙⟩ = ⟨𝐻⟩ 
One would now find 𝐸(𝛼) and minimize it as to 
estimate the ground state of the Helium atom. 

One would first rewrite the Hamiltonian to 

Ĥ = Ĥ1 + 𝐺
1

𝑟1
+ Ĥ𝟐 + 𝐺

1

𝑟2
+ 𝑉𝑒𝑒 where 𝐺 =

(𝛼−𝑍)𝑒2

4𝜋𝜖0
 

 

Then find 𝐸(𝛼) by 
 

𝐸(𝛼) = ⟨𝜙|Ĥ1|𝜙⟩ + ⟨𝜙|Ĥ2|𝜙⟩ + ⟨𝜙|𝑉𝑒𝑒|𝜙⟩ 
+ 𝐺⟨𝜙|1/𝑟1|𝜙⟩ + 𝐺⟨𝜙|1/𝑟2|𝜙⟩ 

 

Time-Dependent Perturbation Theory 
Consider a Hamiltonian consisting of a time-independent 

part Ĥ0 and time dependent part 𝑉(𝑡): 
 

Ĥ = Ĥ(𝑡) = Ĥ0 + 𝑉(𝑡) 
 

where 𝑉(𝑡) is a disturbance/perturbation. A solution to 
TDSE can be written as 

 

|Ψ(𝑡)⟩ = Σ𝑛 𝑐𝑛(𝑡)|𝜓𝑛⟩𝑒
−𝑖𝐸𝑛𝑡/ℏ 

 

where |𝜓𝑛⟩ and 𝐸𝑛 are known solutions to the TISE with 
Ĥ0. We need to find {𝑐𝑛(𝑡)}, which follow the equations 

 

𝑖ℏ�̇�𝑚 =∑ 𝑐𝑛𝑉𝑛𝑚𝑒
𝑖𝜔𝑚𝑛𝑡

 

𝑛
,     𝑚 = 1,2,3, … 

 

where �̇�𝑚 =
𝑑

𝑑𝑡
𝑐𝑚,  𝑉𝑛𝑚 = ⟨𝜓𝑚|𝑉|𝜓𝑛⟩,  and 𝜔𝑚𝑛 =

𝐸𝑚−𝐸𝑛

ℏ
. 

______________________________________________________________ 
Suppose the disturbance 𝑉(𝑡) is weak, such that the 
coefficients 𝑐𝑛(𝑡) vary vert slowly with time, meaning 

 

𝑐𝑚(𝑡) ≃ 𝑐𝑚(𝑡0) +
1

𝑖ℏ
∑ 𝑐𝑛(𝑡0)

 

𝑛
∫ 𝑉𝑚𝑛(𝑡

′)𝑒𝑖𝜔𝑚𝑛𝑡
′
𝑑𝑡′

𝑡

𝑡0

 
 

^ First order general time-dependent perturbation 
result 

 

If the system is in one of its eigenstates |𝜓𝑛⟩ of Ĥ0 at time 
𝑡 = 𝑡0, we have a special first order result: 

𝑐𝑚(𝑡) ≃ 𝛿𝑛𝑚 +
1

𝑖ℏ
∫ 𝑉𝑚𝑛(𝑡

′)𝑒𝑖𝜔𝑚𝑛𝑡
′
𝑑𝑡′

𝑡

𝑡0

 

_____________________________________________________________ 
The transition amplitude 𝑐𝑓(𝑡) from initial state |𝜓𝑖⟩ with 

energy 𝐸𝑖 to a final state |𝜓𝑓⟩ with energy 𝐸𝑓 we have 

𝑐𝑓(𝑡) ≃
1

𝑖ℏ
∫ 𝑉𝑓𝑖(𝑡

′)𝑒𝑖𝜔𝑓𝑖𝑡
′
𝑑𝑡′

𝑡

𝑡0

      assuming     𝑓 ≠ 𝑖 
 

Transition probability from state 𝑖 to 𝑓 is given by 
 

𝑃𝑖→𝑓(𝑡) = |𝑐𝑓(𝑡)|
2
 

 

Harmonic Perturbations 
Let 𝑉(𝑡) = 𝑉0(𝐫) cos(𝜔𝑡)           Note 𝜔 ≠ 𝜔𝑓𝑖 

𝑐emission(𝑡) ≃
1

2
⟨𝜓𝑓|𝑉0|𝜓𝑖⟩

1 − 𝑒𝑖(𝜔𝑓𝑖+𝜔)𝑡

𝐸𝑓 − 𝐸𝑖 + ℏ𝜔
    if  𝐸𝑓 < 𝐸𝑖   

 

𝑐absorption(𝑡) ≃
1

2
⟨𝜓𝑓|𝑉0|𝜓𝑖⟩

1 − 𝑒𝑖(𝜔𝑓𝑖−𝜔)𝑡

𝐸𝑓 − 𝐸𝑖 − ℏ𝜔
    if  𝐸𝑓 > 𝐸𝑖   

 

 

 

 

 

Fermis Golden Rule 
 

Transition probability per unit time (Transition Rate) 
for a transition from an initial state into a continuum of 

final states becomes constant 
 

𝑅𝑖→𝑓 =
𝑑

𝑑𝑡
𝑃𝑖→𝑓 =

2𝜋

ℏ
|𝑉𝑓𝑖|

2
𝜌(𝐸𝑓)  

  

Density of states (DOS) 
 

 Number of allowed states per energy 
 

 𝜌(𝐸) = 𝑑

𝑑𝐸
𝑁(𝐸) 

 

 
Density of states for Fermions 

For Fermions with mass 𝑚: 
 

 

 𝜌(𝐸) = 𝑉02𝜋 (
2𝑚

ℏ2
)
3/2

√𝐸 
 

where 𝑉0 is a general “normalization volume”, i.e., the 
box volume where all wavefunctions are normalized 

within. 
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Classical Scattering 

 
Source: https://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec20-21.pdf 

 
Scattering angle 𝜃 is determined by impact 

parameter 𝑏. We have 
 

𝑑𝜎

𝑑Ω
≡ 𝐷(𝜃)𝑑Ω 

 

𝐷(𝜃) =
𝑏 𝑑𝑏 𝑑𝜙

sin 𝜃 𝑑𝜃 𝑑𝜙
=

𝑏

sin 𝜃
|
𝑑𝑏

𝑑𝜃
| 

 

where 𝜎 is the cross section and                
𝑑Ω = sin 𝜃 𝑑𝜃 𝑑𝜙 is the solid angle. 

 

𝜎 = ∫ 𝑑𝜎 = ∫ 𝐷(𝜃)𝑑Ω 
 

=
# scattered particles (any angle) per time

# incident particles per time
 

 
 

Hard Sphere Scattering 

 

𝜃 = 𝜋 − 2𝛼       𝛼 =
𝜋

2
−
𝜃

2
 

 

Impact parameter can be expressed as: 
 

𝑏 = 𝑅 sin(𝛼) = 𝑅 sin (
𝜋

2
−
𝜃

2
) = 𝑅 cos (

𝜃

2
) 

 

Which implies 
 

𝜃 = {
2 acos(𝑏/𝑅)  if  𝑏 ≤ 𝑅
0                       if  𝑏 ≥ 𝑅 

 

________________________________________________ 

|
𝑑𝑏

𝑑𝜃
| =

1

2
𝑅 sin (

𝜃

2
)  

 

⇒ 𝐷(𝜃) =
𝑅 cos(𝜃/2)

sin(𝜃)
⋅
1

2
𝑅 sin (

𝜃

2
) 

________________________________________________ 
Cross section becomes 

 

𝜎 = ∫ 𝑑𝜎 = ∫ 𝐷(𝜃)𝑑Ω = 𝜋𝑅2 
 

i.e., size of scattering object 
 

Q.M Scattering 

 

Asymptotic incomming: 

𝜓in =
1

√𝑣
𝑒𝑖𝐤⋅𝐫 = 𝑐𝑒𝑖𝐤⋅𝐫 

 

Scattered form of wavefunction 
𝜓sc = 𝑐 𝑓(𝜃, 𝜙) 𝑒

𝑖𝐤⋅𝐫/𝑟 
 

where 𝑐 some complex constant, and 𝑓 the scattering amplitude. 
____________________________________________________________________________ 

 

𝜓in and 𝜓sc are boundry conditions for the TISE 

[−
ℏ2

2𝑚
∇2 + 𝑉(𝑟)] 𝜓(𝐫) = 𝐸𝜓(𝐫) 

which can be reqritten to 
 

(∇2 + 𝑘2) 𝜓(𝐫) = 𝑢(𝑟) 𝜓(𝐫) 
 

Where 𝑘2 = 2𝑚𝐸/ℏ2 and 𝑢(𝑟) = 2𝑚/ℏ2𝑉(𝑟) 
 

Current density 𝜌(𝐫, 𝑡) = |𝜓(𝐫, 𝑡)|2 ⇒ ∫ 𝜌(𝐫, 𝑡)𝑑𝑉
 

𝑉
= 1 

 

From the realm of electromagnitism, we have 
𝜕

𝜕𝑡
∫ 𝜌(𝐫, 𝑡)𝑑𝑉 = −∫ 𝐣 ⋅ 𝑑𝐒 = ∫∇ ⋅ 𝐣 𝑑𝑉

 

𝑉

 

𝑆

 

𝑉

 

Which gives us what is called “conservation of probability” 
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝐣 = 0 

 

Knowing that 𝜕𝜌
𝜕𝑡
=

𝜕

𝜕𝑡
𝜓∗𝜓, we can use TDSE to find the current 

𝐣 = Re (𝜓∗
ℏ

𝑖𝑚
∇𝜓 ) 

 

𝐣in =  Re (𝜓in
∗
ℏ

𝑖𝑚

𝜕

𝜕𝑟
 𝜓in ⋅ 𝐞𝐫) = |𝑐|

2
ℏ𝐤

𝑚
 

 

𝐣sc = |𝑐|
2 |𝑓(𝜃, 𝜙)|2  

ℏ𝐤

𝑚𝑟2
         

 

 

The number of particles into 𝑑Ω per time is thus 𝑗𝑠𝑐 ⋅ 𝑟2𝑑Ω 
 

⇒ 𝑑σ =
𝑗sc ⋅ 𝑟

2𝑑Ω

𝑗in
⇒
𝑑𝜎

𝑑Ω
= |𝑓(𝜃, 𝜙)|2 

 

where 𝑓(𝜃, 𝜙) can be approximated as the Born Approximation to 

𝑓(𝜃, 𝜙) ≃ 𝑓𝐵(𝜃, 𝜙) = −
1

4𝜋
∫𝑒𝑖(𝐤−𝐤

′)⋅𝐫𝑢(𝐫) 𝑑𝐫 
 

𝐤′ is for the final plane wave 
 

Hard Sphere Scattering Mean Free Path 
 

If there is a quantum probability 𝑃𝑠 for scattering in/at the hard sphere, then the total cross section 
for the transition question becomes  

 

𝜎 = 𝑃𝑠𝜋𝑅
2 

 

The smaller 𝑃𝑆, the smaller the geometrical cross section, and the longer becomes an impinging 
particle mean free path in a medium of spheres: 

 

 𝐿 = 1/𝜎𝜌,  
 

where 𝜌 is the number of spheres per volume unit. The mean free path is the average distance a 
particle travels before changing direction or energy due to collisions. 

 
 

https://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec20-21.pdf


 

 
10/10        MISCELLANEOUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fundamental constants 
Name Symbol Value (3 sig. dig.) In natural units 

Planck’s reduced constant ℏ 1.05 × 10−34 Js 1 

Speed of light 𝑐 3.00 × 108 m/s 1 

Electron mass 𝑚𝑒 9.11 × 10−31 kg 0.511 MeV 

Proton mass 𝑚𝑝 1.67 × 10−27 kg 938 MeV 

Proton charge 𝑒 1.60 × 10−19 C √4𝜋𝛼 

Electron charge −𝑒 −1.60 × 10−19 C −√4𝜋𝛼 

Permittivity of space 𝜖0 8.85 × 10−12 C2/Jm 1 

Fine structure constant 𝛼 𝑒2/(4𝜋𝜖0ℏ𝑐) ≃ 1/137 ≃ 7.30 × 10
−3 𝑒2/(4𝜋) 

Bohr radius (Hydrogen atom) 𝑎0 4𝜋𝜖0ℏ
2/(𝑚𝑒𝑒

2) ≃ 5.29 × 10−11 m 4𝜋/(𝑚𝑒𝑒
2) 

 
 

Electron volt unit conversions 
Quantity Unit Value (3 sig. dig.) 

Energy eV 1.60 × 10−19 J 

Momentum eV/c 5.34 × 10−28 kg ⋅ m/s 

Mass eV/c2 1.78 × 10−36kg 

 
 

Common integrals 
 

∫𝑥 sin(𝑎𝑥)𝑑𝑥 =
1

𝑎2
sin(𝑎𝑥) −

𝑥

𝑎
cos(𝑎𝑥) 

 

∫𝑥 cos(𝑎𝑥)𝑑𝑥 =
1

𝑎2
cos(𝑎𝑥) +

𝑥

𝑎
sin(𝑎𝑥) 

Exponential integrals 
 

∫ 𝑥𝑛𝑒−𝑥/𝑎𝑑𝑥 = 𝑛! 𝑎𝑛+1
∞

0

 
 

∫ 𝑒−𝑎𝑥
2
𝑑𝑥

∞

−∞

= √
𝜋

𝑎
 

 

∫ 𝑥𝑒−𝑎𝑥
2
𝑑𝑥

∞

−∞

= 0 
 

∫ 𝑥2𝑒−𝑎𝑥
2
𝑑𝑥

∞

−∞

=
√𝜋

2√𝑎3
 

 

Gaussian integrals 
 

∫ 𝑥2𝑛𝑒−𝑥
2/𝑎2𝑑𝑥

∞

0

= √𝜋
(2𝑛)!

𝑛!
 (
𝑎

2
)
2𝑛+1

 
 

∫ 𝑥2𝑛+1𝑒−𝑥
2/𝑎2𝑑𝑥

∞

0

=
𝑛!

2
𝑎2𝑛+2 

Integration by parts 
 

∫ 𝑓
𝑑𝑔

𝑑𝑥
 𝑑𝑥 =

𝑏

𝑎

−∫
𝑑𝑓

𝑑𝑔
𝑔𝑑𝑥

𝑏

𝑎

+ 𝑓𝑔│
𝑏
𝑎

 

Trigonometric identities 
 

sin(𝑎 ± 𝑏) = sin(𝑎) cos(𝑏) ± cos(𝑎) sin(𝑏) 
 

cos(𝑎 ± 𝑏) = cos(𝑎) cos(𝑏) ∓ sin(𝑎) sin(𝑏) 
 

sin(𝑎) sin(𝑏) =
cos(𝑎 − 𝑏) − cos(𝑎 + 𝑏)

2
 

 

sin(2𝜃) = 2 sin𝜃 cos𝜃 
 

cos(2𝜃) = cos2𝜃 − sin2𝜃  
 

sin2𝜃 =
1 − cos(2𝜃)

2
 

 

cos2𝜃 =
1 + cos(2𝜃)

2
 

 

Law of cosines 
 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos(𝜃) 


