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SINGLE PARTICLE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Work 
From point 1 to point 2 

𝑊12 = ∫ 𝐅 ⋅ 𝑑𝐬
2

1

 

Linear mechanics 

𝐯 =
𝑑𝐫

𝑑𝑡
 𝐩 = 𝑚𝐯 𝐚 =

𝑑2𝐫

𝑑𝑡
 

𝐅 =
𝑑𝐩

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑚𝐯) = 𝑚𝐚 

 

Σ𝐅 = 0 ⇒
𝑑𝐩

𝑑𝑡
= 0 ⇒ 𝐩 is conserved 

 

Angular mechanics 

𝐋 = 𝐫 × 𝐩 𝐍 = 𝐫 × 𝐅 =
𝑑𝐋

𝑑𝑡
 

 

Σ𝐍 = 0 ⇒
𝑑𝐋

𝑑𝑡
= 0 ⇒ 𝐋 is conserved 

Work for const. mass 
𝑊12 = 𝑇2 − 𝑇1 

 

where 𝑇 is Kinetic Energy: 
𝑇 = 1/2 𝑚𝑣2 

 
Conservative force 

If the path from 1 to 2 does not matter, then the force is 
conservative.  

∮ 𝐅 ⋅ 𝑑𝐬 = 0 

Potential energy 
If force is conservative, then 𝐅 can be expressed as 

𝐅 = −∇𝑉(𝐫) 
Differential work can further be expressed as 

𝐅 ⋅ 𝑑𝐬 = 𝑑𝑉 
Which implies 
𝑊12 = 𝑉1 − 𝑉2 

where 𝑉 is called the potential energy. 

If forces acting on a particle are conservative, then total 
energy of the particle, 𝑇 + 𝑉, is conserved. 

SYSTEM OF PARTICLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newtons 2nd law 

𝑀
𝑑2𝐑

𝑑𝑡2
= ∑ 𝐅𝑖

(𝑒)

 

𝑖

≡ 𝐅(𝑒) 

𝐑 is the center of mass, and 𝑀 the total mass: 

𝐑 =
Σ 𝑚𝑖𝐫𝑖

𝑀
=

Σ 𝑚𝑖𝐫𝑖

Σ𝑚𝑖
 

𝐅(𝑒) is the external force acting on the system. 

Linear momentum 

𝐏 = ∑ 𝑚𝑖

𝑑𝐫𝑖

𝑑𝑡
= 𝑀

𝑑𝐑

𝑑𝑡
 

 

𝐅(𝒆) = 0 ⇒
𝑑𝐏

𝑑𝑡
= 0 ⇒ 𝐏 is conserved 

Angular momentum 

𝐋 = ∑ 𝐫𝑖 × 𝐩𝑖

 

𝑖

= 𝐑 × 𝐏 + ∑ 𝐫𝑖′ × 𝐩𝑖′

 

𝑖

 

Where 𝐫′ and 𝐩′ are relative to the center of mass. 
The external torque is equal to 

𝐍(𝑒) =
𝑑𝐋

𝑑𝑡
 

𝐍(𝑒) = 0 ⇒
𝑑𝐋

𝑑𝑡
= 0 ⇒ 𝐋 is conserved 

  
 Kinetic Energy 

𝑇 =
1

2
𝑀𝑣2 +

1

2
∑ 𝑚𝑖𝑣𝑖

′2

 

𝑖

 

where 𝑣 is the velocity of center of mass, and 𝑣𝑖
′ is 

velocity of particle 𝑖 relative to the center of mass. 
 

Potential Energy 

𝑉 = ∑ 𝑉𝑖

 

𝑖

+
1

2
∑ 𝑉𝑖𝑗

 

𝑖,𝑗
𝑖≠𝑗

 

where 𝑉𝑖𝑗 = 𝑉𝑖𝑗(|𝐫𝑖 − 𝐫𝑗|) is a potential between 
two internal particles, where ∇𝑉𝑖𝑗 = (𝐫𝑖 − 𝐫𝑗)𝑓, 

where 𝑓 is some scalar function, 
 

CONSTRAINTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Holonomic 
If the constraints can be expressed as 

𝑓(𝐫1, 𝐫2, 𝐫3, … , 𝑡) = 0 
 

Example (rigid body): (𝐫𝑖 − 𝐫𝑗)
2

− 𝑐𝑖𝑗
2 = 0 

Non-holonomic 
Particle on sphere for example: 

𝑟2 − 𝑎2 ≥ 0 
 

An inequality, not equality. 

Generalized coordinates 
System of 𝑁 particles have 3𝑁 degrees of 

freedom. There exists 𝑘 amount of holonomic 
constraint equations for the system. The 

system thus has 3𝑁 − 𝑘 degrees of freedom. 
The generalized coordinates 𝑞𝑖 represents 

these degrees of freedom, and every 𝑟𝑖 can be 
expressed by them 

 

𝐫1 = 𝐫1(𝑞1, 𝑞2, … , 𝑞3𝑁−𝑘 , 𝑡)  
⋮ 

𝐫𝑁 = 𝐫𝑁(𝑞1, 𝑞2, … , 𝑞3𝑁−𝑘 , 𝑡)  
 

Virtual displacement 
Also called infinitesimal variation, noted as 
𝛿𝑟, shows how a system can hypothetically 
deviate very slightly form the actual path 𝑟 
without violating the constraints at a given 

time instant. 

D'Alembert's principle 

∑ (𝐅𝑖 −
𝑑

𝑑𝑡
𝐩) ⋅ 𝛿𝐫𝑖 = 0

 

𝑖

 

where 𝐅𝑖 is force on particle (excl. forces of 
constraints, and 𝛿𝐫𝑖 the virtual displacement. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                              LAGRANGIAN FORMULATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalized velocity 
By the chain rule: 

𝐯𝑖 ≡
𝑑𝐫𝑖

𝑑𝑡
= ∑

𝜕𝐫𝑖

𝜕𝑞𝑘
�̇�𝑘  

 

𝑘

+
𝜕𝐫𝑖

𝜕𝑡
 

Generalized virtual displacement 

𝛿𝐫𝑖 = ∑
𝜕𝐫𝑖

𝜕𝑞𝑗
𝛿𝑞𝑗

 

𝑗

 

No time variation 𝛿𝑡 is involved, since virtual displacement 
only considers displacement of coordinates. 

Virtual work 

∑ 𝐅𝑖 ⋅ 𝛿𝐫𝑖 = ∑ 𝑄𝑗𝛿𝑞𝑗

𝑗𝑖

 

Where 𝑄𝑗 are components of the generalized force 

𝑄𝑗 = ∑ 𝐅𝑖 ⋅
𝜕𝐫𝑖

𝜕𝑞𝑗
𝑖

= − ∑ ∇𝑖𝑉 ⋅
𝜕𝐫𝑖

𝜕𝑞𝑗
= −

𝜕𝑉

𝜕𝑞𝑗
𝑖

 

Lagrangian and Lagrange’s equations 
ℒ = 𝑇 − 𝑉 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕�̇�𝑗
) −

𝜕ℒ

𝜕𝑞𝑗
= 0 

 

which is also the equations of motions. 

Note: ℒ′(𝑞, �̇�, 𝑡) = ℒ(𝑞, �̇�, 𝑡) +
𝑑

𝑑𝑡
𝐹(𝑞, 𝑡) is also a 

Lagrangian that result in same equations of motion. 

Lagrange equations with dissipation 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝑞𝑗
+

𝜕ℱ

𝜕�̇�𝑗
= 0 

 

Where ℱ is the Rayleigh's dissipation function 

ℱ =
1

2
∑(𝑘𝑥𝑣𝑖𝑥

2 + 𝑘𝑦𝑣𝑖𝑦
2 + 𝑘𝑧𝑣𝑖𝑧

2 )

𝑖

 

More general Lagrange’s equations 
If not all the forces acting on the system are 

derivable from a potential (such as with friction) 
then Lagrange’s equation can be written on the 

form 
𝑑

𝑑𝑡
(

𝜕ℒ

𝜕�̇�𝑗
) −

𝜕ℒ

𝜕𝑞𝑗
= 𝑄𝑗 

 

Hamilton’s principle 
The motion of the system from time 𝑡1 to 𝑡2 is 
such that the line integral of the Lagrangian 

(called the action): 

𝑆 = ∫ ℒ 𝑑𝑡
𝑡2

𝑡1

 

is stationary. Meaning: 𝛿𝑆 = 0 

Variational calculus techniques by example 
Problem: find shortest path between two points 

in the plane.  

The length of the curve is 

𝐼 = ∫ 𝑑𝑠
𝑓

𝑖

= ∫ √𝑑𝑥2 + 𝑑𝑦2
𝑓

𝑖

= ∫ √1 + 𝑦′2𝑑𝑥
𝑓

𝑖

 

where 𝑦′ = 𝑑𝑦/𝑑𝑥 

We want to find a function 𝑦 = 𝑦(𝑥) such that 𝐼 
is minimized. Let 𝜙(𝑦) be a functional of 𝑦. 

𝜙(𝑦) = √1 + 𝑦′2           𝐼 = ∫ 𝜙(𝑦)𝑑𝑥
𝑓

𝑖

 

There are infinitely many ways to draw a line 
between the points. All these paths can be 

expressed by 
 

𝑌(𝑥, 𝜖) = 𝑦(𝑥) + 𝜖𝜂(𝑥) 
 

where 𝜖 very small, and 𝜂(𝑖) = 𝜂(𝑓) = 0 

The length of any possible curve is expressed by 

𝐼(𝜖) = ∫ 𝜙(𝑥, 𝑌, 𝑌′)𝑑𝑥
𝑓

𝑖

 

We want to determine 𝑦(𝑥) such that 𝐼 is 
stationary (i.e., 𝛿𝐼 = 0), which happens when 

[
𝑑

𝑑𝜖
𝐼]

𝜖=0
= 0 

We thus solve 

[
𝑑

𝑑𝜖
∫ 𝜙(𝑥, 𝑌, 𝑌′)𝑑𝑥

𝑓

𝑖

]
𝜖=0

= 0 

which yields the Euler-Lagrange equation 
𝑑

𝑑𝑥
(
𝜕𝜙

𝜕𝑦′
) −

𝜕𝜙

𝜕𝑦
= 0 

Which has solution: 𝑦 = 𝑚𝑥 + 𝑏 
 

Generalized momentum 

𝑝𝑗 =
𝜕ℒ

𝜕�̇�𝑗
 

 

 A.k.a canonical momentum 

Cyclic/ignorable coordinates 
If a coordinate 𝑞𝑗 does not appear in the 

Lagrangian, then it is called cyclic or ignorable, 
and the Lagrange equation reduces to 

 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕�̇�𝑗
) = 0     or    

𝑑

𝑑𝑡
𝑝𝑗 = 0 

 

Energy function 

ℎ(𝑞1, 𝑞2, … , 𝑞𝑛;   �̇�1, �̇�2, … �̇�𝑛;   𝑡) = ∑ �̇�𝑗

𝜕ℒ

𝜕�̇�𝑗
− ℒ

𝑗

 

If the transformation equations for generalized coordinates 
do not explicitly depend on time, AND the potential 𝑉 

does not depend on the generalized velocities, then, and 
only then, is ℎ = 𝑇 + 𝑉 = "total energy"  

Conservation of ℎ 
We have 

𝑑ℎ

𝑑𝑡
= −

𝜕ℒ

𝜕𝑡
 

Thus, if the Lagrangian does not explicitly dependent on 
time 𝑡 (i.e., the variable 𝑡 does not appear in ℒ), then we 

say that ℎ is conserved. 
 

Monogenic 
All forces (except for constraint forces) are 

derivable from the generalized scalar potential: 
 

𝑉(𝑞1, 𝑞2, … , 𝑞𝑛;  �̇�1, �̇�2, … �̇�𝑛;   𝑡) 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CENTRAL FORCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two-Body → Reduced One-Body 
Given a system consisting of two mass-points 

𝑚1 and 𝑚2, where the only forces are due to an 
interaction potential 𝑈(𝐫), where 𝐫 = 𝐫2 − 𝐫1, we 

choose the six degrees of freedom to be the 
components of 𝐑 and 𝐫, where 𝐑 is for the 

center of mass.  

The Lagrangian becomes 

ℒ =
1

2
𝑀�̇�2 +

1

2
𝜇�̇�2 − 𝑈(𝐫, �̇�, … ) 

Where 𝑀 = 𝑚1 + 𝑚2 is the total mass, and 
𝜇 =

𝑚1𝑚2

𝑚1+𝑚2
 is the reduced mass. 

Note that 𝐑 is cyclic and will therefore not 
appear in the equations of motions. Meaning 

the center of mass is either still or moving 
uniformly. We can, therefore, instead just write 

ℒ′ =
1

2
𝜇�̇�2 − 𝑈(𝐫, �̇�, … ) 

 

Reduced One-Body Equations of Motion 
Assuming 𝑈 = 𝑉(𝑟), where 𝑟 ≡ |𝐫|, we are 
looking at a spherical symmetric problem 

 

Rewriting ℒ′ with spherical coordinates, we have 
 

ℒ′ =
1

2
𝜇(�̇�2 + 𝑟2�̇�2)

2
− 𝑉(𝑟) 

 

This gives rise to these four equations 
𝜇𝑟2�̇� = 𝑙 

 

𝐸 =
1

2
𝜇(�̇�2 + 𝑟2�̇�2)

2
+ 𝑉(𝑟) 

 

𝑡 = ∫
𝑑𝑟

√
2
𝜇 (𝐸 − 𝑉 −

𝑙2

2𝜇𝑟2)

𝑟

𝑟0

 

 

𝜃 = 𝑙 ∫
𝑑𝑡

𝜇𝑟2(𝑡)
+ 𝜃0

𝑡

0

 

Central force 
A central force on an object is a force that is directed 
towards or away from a point called center of force.  

 

Virial Theorem 
 

⟨𝑇⟩ = −
1

2
∑⟨𝐅𝑖 ⋅ 𝐫𝑖⟩

𝑖

 

Equation of orbit 
Using the four equations of motion of the reduced one-

body system, one can derive the integral 

𝜃 = 𝜃′ − ∫
𝑑𝑢

√2𝜇𝐸
𝑙2 −

2𝜇𝑎
𝑙2 𝑢−𝑛−1 − 𝑢2

𝑢

𝑢0

 

where 𝑢 = 1/𝑟, and 𝑉(𝑟) = 𝑎𝑟𝑛+1 

If 𝑉(𝑟) = −𝑘/𝑟 (called the Kepler problem) then the 
integral equates to the elliptical orbit equation: 

1

𝑟
=

𝜇𝑘

𝑙2
(1 + √1 +

2𝐸𝑙2

𝜇𝑘2
cos (𝜃 − 𝜃′)) 

This is the equation of a conic with one focus at the origin 
1

𝑟
= 𝐶[1 + 𝑒 cos(𝜃 − 𝜃′)] 

Where 𝑒 = √1 +
2𝐸𝑙2

𝜇𝑘2  is the eccentricity, and where we can 

see that 𝜃′ represents as one of the turning angles of the 
orbit. 

The angular momentum and energy are constants of 
orbit (i.e., they decide the orbit) 

Closed orbits 
Orbits in which an 
object eventually 

retraces its own steps 

Bertrand’s theorem 
Among central-force potentials with bound 

orbits, there are only two types of central-force 
potentials with the property that all bound 

orbits are also closed orbits: 

𝑉(𝑟) = −
𝑘

𝑟
    with force    𝑓(𝑟) = −

𝑑𝑉

𝑑𝑟
= −

𝑘

𝑟2
 

𝑉(𝑟) =
1

2
𝑘𝑟2    with force    𝑓(𝑟) = −

𝑑𝑉

𝑑𝑟
= −𝑘𝑟 

 

Orbit properties 
Eccentricity Energy Shape 

𝑒 > 1 𝐸 > 0 Hyperbola 
𝑒 = 1 𝐸 = 0 Parabola 
𝑒 < 1 𝐸 < 0 Ellipse 
𝑒 = 0 𝐸 = −𝜇𝑘2/(2𝑙2)  Circle 

Semi-major axis is given by 

𝑎 = −
𝑘

2𝐸
 

and one can write the elliptical orbit equation as 

𝑟 =
𝑎(1 − 𝑒2)

1 + 𝑒 cos(𝜃 − 𝜃′)
 

Orbit equation with time 
If 𝑉(𝑟) = −𝑘/𝑟, one can combine the elliptical 

orbit equation with the equation for time in the 
reduced one body set of equation to show that 

𝑡 =
𝑙3

𝜇𝑘2
∫

𝑑𝜃

[1 + 𝑒 cos(𝜃 − 𝜃′)]2

𝜃

𝜃0

 

If 𝑒 = 1, we get 
 

𝑡 =
𝑙3

2𝑚𝑘2
(tan

𝜃

2
+

1

3
tan3

𝜃

2
) 

If 𝑒 < 1, we get 
 

𝜏 = 2𝜋𝑎3/2√𝑚/𝑘 
where 𝜏 is the period of orbit. For the planets 

around the Sun, this becomes Kepler’s 3rd law 

𝜏 =
2𝜋𝑎3/2

√𝐺(𝑚𝑃 + 𝑚𝑆)
≈

2𝜋𝑎3/2

√𝐺𝑚𝑆

 

Laplace-Runge-Lenz vector 
For the Kepler problem, we have a conserved vector 

𝐀 = 𝐩 × 𝐋 − 𝜇𝑘
𝐫

𝑟
 

𝐴2 = 𝜇2𝑘2 + 2𝜇𝐸𝑙2 



 

 

 

 

  

SCATTERING 

 

 

 

 

 

 
 

                                                                                                                                                         Source: https://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec20-21.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross section 

𝜎(𝛀)𝑑Ω =
# particles scattered into 𝑑Ω per unit time  

incident intensity
 

Where 𝑑Ω is the solid angle in 𝛀 direction, and 𝜎(𝛀) is 
the differential scattering cross section 

Intensity 
Number of particles crossing a unit area normal to the 

particle beam in per unit time. Often denoted by 𝐼 

Solid angle 
𝑑Ω = 2𝜋 sin(𝜃)𝑑𝜃 

Where 𝜃 is the angle between the scattered and 
incident directions, known as the scattering angle. 

Angular momentum 
 Amount of scattering of particle is determined by its 

energy and angular momentum 
𝑙 = 𝑚𝑣𝑏 = 𝑏√2𝑚𝐸 

where 𝑏 is the impact parameter, where 
𝑏 = 𝑏(𝜃, 𝐸) 

Differential cross section 

𝜎(𝜃) =
𝑏

sin 𝜃
|
𝑑𝑏

𝑑𝜃
| 

 

Total cross section 

𝜎𝑇 = ∫ 𝜎(𝛀)𝑑Ω
 

4𝜋

 

= 2𝜋 ∫ 𝜎(𝜃) sin 𝜃𝑑𝜃
 

4𝜋

 

 
Orbit equation Coulomb field 

1

𝑟
=

𝜇 𝑍𝑒 𝑍′𝑒

𝑙2
(𝜖 cos 𝜃 − 1) 
 

Which is a hyperbolic orbit representing the scattering 
from a scatter scenter with potential 

𝑉(𝑟) = −
𝑘

𝑟
= −

𝑍𝑒 𝑍′𝑒

𝑟
     

Where 𝑍𝑒 is the fixed charged responsible for scattering 
the incident particle with 𝑍′𝑒 charge 

Cross section Coulomb field 
Impact parameter function becomes 

𝑏 =
𝑍𝑒𝑍′𝑒

2𝐸
cot (

𝜃

2
) 

Differential cross section becomes 

𝜎(𝜃) =
1

4
(
𝑍𝑒𝑍′𝑒

2𝐸
)

2

csc4 (
𝜃

2
)  

 

SUMMATION CONVENTION 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Einstein summation convention 
Whenever an index occurs two or more times in a term, it 

is implied that the terms are to be summed over all 
possible values of the index. Example 

𝑎𝑖𝑗𝑥𝑗 = ∑ 𝑎𝑖𝑗𝑥𝑗

3

𝑗=1
= 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + 𝑎𝑖3𝑥3 

                                                    THE EULER ANGLES  𝝓   𝝍  𝜽 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

One coordinate system relative to another 

[1] 
The body axes (𝑥′, 𝑦′, 𝑧′) can be described relative to the 
space axes (𝑥, 𝑦, 𝑧) by angles of rotation. Visualized here 
by subsequent rotations of a white disc which in the end 
represents the (𝑥′, 𝑦′, 𝑧′) system. Note that they have the 

same origin. 𝐍 is the line of nodes which is perpendicular 
to both the 𝑧-axis and the 𝑧′-axis 

Rotation matrices 
 

   First rotation: 𝐃 =

[
cos 𝜙 sin 𝜙 0

− sin 𝜙 cos 𝜙 0
0 0 1

] 

 

 
 

Second rotation: 𝐂 =

[
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

] 

 

 

   Third rotation: 𝐁 =

[
cos 𝜓 sin 𝜓 0

− sin 𝜓 cos 𝜓 0
0 0 1

] 

 

 

 
 

Space to Body axes transformation 

𝐀 = [

cos 𝜓 cos 𝜙 − cos 𝜃 sin 𝜙 sin 𝜓 cos 𝜓 sin 𝜙 + cos 𝜃 cos 𝜙 sin 𝜓 sin 𝜓 sin 𝜃
− sin 𝜓 cos 𝜙 − cos 𝜃 sin 𝜙 cos 𝜓 − sin 𝜓 sin 𝜙 + cos 𝜃 cos 𝜙 cos 𝜓 cos 𝜓 sin 𝜃

sin 𝜃 sin 𝜙 − sin 𝜃 cos 𝜙 cos 𝜃
]  

Body to Space axes transformation 
𝐀−𝟏 = 𝐀⊺

= [

cos 𝜓 cos 𝜙 − cos 𝜃 sin 𝜙 sin 𝜓 − sin 𝜓 cos 𝜙 − cos 𝜃 sin 𝜙 cos 𝜓 sin 𝜃 sin 𝜙
cos 𝜓 sin 𝜙 + cos 𝜃 cos 𝜙 sin 𝜓 − sin 𝜓 sin 𝜙 + cos 𝜃 cos 𝜙 cos 𝜓 − sin 𝜃 cos 𝜙

sin 𝜓 sin 𝜃 cos 𝜓 sin 𝜃 cos 𝜃
] 

Full 
transformation 

𝐀 = 𝐁𝐂𝐃  

https://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec20-21.pdf


  
ROTATIONS of RIGID BODIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eulers Theorem 
The general displacement of a rigid body with one point 

fixed, is a rotation Φ about some axis 𝐑.  

This axis has to be the same in the body and space axes: 
𝐑′ = 𝐀𝐑 = 𝐑 

Finding axis of rotation 
Set 𝜆 = 1 in the eigenvalue equation (𝐀 − 𝜆𝟏)𝐑 = 0 and 

solve for 𝐑 
 

Finding angle of rotation 
Solve the following for Φ 

cos
Φ

2
= cos

𝜙 + 𝜓

2
cos

𝜃

2
 

Infinitesimal transformation of vector 
 

𝑑𝐫 = 𝐫 × 𝑑𝛀             𝐫′ = 𝐫 + 𝑑𝐫 

 
Where 𝐧𝑑Φ is along the axis of rotation, and 

|𝑑𝐫| = 𝑑𝑟 = 𝑟 sin 𝜃𝑑Φ 

Infinitesimal change in vector 
Let 𝐆 be a vector or pseud-vector in a 

mechanical problem (e.g. position of point, 
total ang. mom. etc.) 

 

(𝑑𝐆)space = (𝑑𝐆)body + 𝑑𝛀 × 𝐆 
⇓ 

(
𝑑𝐆

𝑑𝑡
)

space
= (

𝑑𝐆

𝑑𝑡
)

body
+ 𝛚 × 𝐆 

 

where 𝛚𝑑𝑡 = 𝑑𝛀 e instantaneous angular 
velocity of the body 

A very important operator is therefore 

(
𝑑

𝑑𝑡
)

𝑠
= (

𝑑

𝑑𝑡
)

𝑟
+ 𝛚 × 

 

Subscript 𝑠 for “space”. Subscript 𝑟 for “rotating” i.e., 
the body  

𝛚 in Euler angles 
𝛚 can be represented as three successive 
infinitesimal rotations with ang. velocities: 

𝜔𝜙 = �̇� along the 𝑧-axis.  
              𝜔𝜃 = �̇� along the line of nodes.  

𝜔𝜓 = �̇� along the 𝑧′-axis.  

Using the 𝐁, 𝐂, and 𝐃 one can expressed 
these along any of the 6 desired axes. 

𝛚 with respect to the body axes are 
 

𝜔𝑥′ = �̇� sin 𝜃 sin 𝜓 + �̇� cos 𝜓 
𝜔𝑦′ = �̇� sin 𝜃 cos 𝜓 − �̇� sin 𝜓 

𝜔𝑧′ = �̇� sin 𝜃 + �̇�                       
 
 
 

Coriolis Effect 
Consider distant nearly static stars as defining the 
spaces axes, and the rotating earth as the rotating 

system. 𝛚 is the angular velocity of the earth. 

(
𝑑𝐫

𝑑𝑡
)

𝑠
= (

𝑑𝐫

𝑑𝑡
)

𝑟
+ 𝛚 × 𝐫 

Can be written as 
𝐯𝑠 = 𝐯𝑟 + 𝛚 × 𝐫 

𝐚𝑠 = (
𝑑𝐯𝑠

𝑑𝑡
)

𝑠
= (

𝑑𝐯𝑠

𝑑𝑡
)

𝑟
+ 𝛚 × 𝐯𝑠 

Which yields 
𝐚𝑠 = 𝐚𝑟 + 2(𝛚 × 𝐯𝑟) + 𝛚 × (𝛚 × 𝐫) 

Newton’s 2nd law states 
𝐅 = 𝑚𝐚𝑠 

Which leads to 
𝐅 − 2𝑚(𝛚 × 𝐯𝑟) − 𝑚𝛚 × (𝛚 × 𝐫) = 𝑚𝐚𝑟 

This means, that to an observer in the rotating system 
(i.e., earth), it appears as if the particle is moving under 

the influence of an effective force equal to 
𝐅eff = 𝐅 − 2𝑚(𝛚 × 𝐯𝑟) − 𝑚𝛚 × (𝛚 × 𝐫) 

The last term −𝑚𝛚 × (𝛚 × 𝐫) is the centrifugal force. 
The middle term −2𝑚(𝛚 × 𝐯𝑟) is the Coriolis effect. 

This does not only apply to earth, this applies to all rigid 
bodies rotating. 

 

Chasles’ Theorem 
Any general displacement of a rigid body can be 

represented by a translation plus rotation. 

The six degrees of freedom are often given as two sets: 
 

1. Three Cartesian coordinates to describe 
translational motion 

 

2. Three Euler angles to describe rotation. 
 

If one point of the body is fixed, then this reduces to 
Eulers theorem. 

 

 

 



 

 

  

RIGID BODY INERTIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Splitting of energies 
By Chasles’ theorem, we can very often split the 

energies into two sets 
𝑇 = 𝑇tran + 𝑇rot           𝑉 = 𝑉tran + 𝑉rot 

 

where 𝑇tran =
1

2
𝑀𝑣2 

with 𝑀 being total mass, and 𝑣 being velocity of 
the center of mass. 

Total angular momentum 
 

𝐋 = 𝑚𝑖[𝜔𝐫𝑖
2 − 𝐫𝑖(𝐫𝑖 ⋅ 𝛚)] 

 

Moment of inertia elements 
The total angular momentum 𝐋 can be expressed as 

 

𝐿𝑥 = 𝐼𝑥𝑥𝜔𝑥 + 𝐼𝑥𝑦𝜔𝑦 + 𝐼𝑥𝑧𝜔𝑧 
𝐿𝑦 = 𝐼𝑦𝑥𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 + 𝐼𝑦𝑧𝜔𝑧 
𝐿𝑧 = 𝐼𝑧𝑥𝜔𝑥 + 𝐼𝑧𝑦𝜔𝑦 + 𝐼𝑧𝑧𝜔𝑧 

 

The diagonal 𝐼 elements are moment of inertia 
coefficients, and the off-diagonal 𝐼 elements are 

products of inertia.  
 

Letting 𝛼 and 𝛽 represent components of 𝛚 and 𝐫𝑖 , the 𝐼 
elements are given by 

 

Rigid body of discrete particles: 
 
 

𝐼𝛼𝛽 = 𝑚𝑖(𝛿𝛼𝛽𝑟𝑖
2 − 𝑟𝑖𝛼𝑟𝑖𝛽) 

 

Rigid continuous body: 
 

𝐼𝛼𝛽 = ∫ 𝜌(𝐫)(𝑟2𝛿𝛼𝛽 − 𝑟𝛼𝑟𝛽)𝑑𝑉
 

𝑉

 

 

Where 𝛿𝑗𝑘 = {
0   if  𝑗 ≠ 𝑘
1  if   𝑗 = 𝑘

 is the Kronecker-Delta, and  
 

𝜌(𝐫) is the density at 𝐫. If uniform density, then 𝜌 = const 
 
 

Moment of inertia tensor �⃡�  
 

�⃡� = (

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

) where 𝐋 = �⃡�𝛚 
Note that 
𝐼𝛼𝛽 = 𝐼𝛽𝛼 

when 𝛼 ≠ 𝛽 
 
 

 

Moment of inertia about axis of rotation 
𝐼 = 𝐧 ⋅ �⃡�  ⋅ 𝐧 = 𝑚𝑖[𝑟𝑖

2 − (𝐫𝑖 ⋅ 𝐧)2] 
 

where 𝐧 is the unit vector defined by 𝛚 = 𝜔𝐧 
Can also be expressed as: 
𝐼 = 𝑚𝑖(𝐫𝑖 × 𝐧) ⋅ (𝐫𝑖 × 𝐧) 

or 

𝐼 =
𝑚𝑖

𝜔2
(𝛚 × 𝐫𝑖) ⋅ (𝛚 × 𝐫𝑖) 

 

Rotational kinetic energy 

𝑇rot =
1

2
𝑚𝑖(𝛚 × 𝐫𝑖)

2 =
1

2
𝐼𝜔2    ⇒      𝐼 =

2𝑇rot

𝜔2
 

Letting 𝛼 and 𝛽 represent components of 𝛚 and 𝐫𝑖 we can 
also write 

𝑇rot =
1

2
𝐼𝛼𝛽𝜔𝛼𝜔𝛽 
 

 
 
 
 
 
 

Parallel axis theorem 
The moment of inertia about a given axis, depend 

only on the moment of inertial about a parallel axis 
through the center of mass. 

Let 𝐼cm be the moment of inertia about the axis 
through the center of mass. Let 𝐼𝑎 be the moment of 
inertia about a axis 𝑎 parallel to the axis through the 

center of mass. We then have 
 

𝐼𝑎 = 𝐼cm + 𝑀(𝐑 × 𝐧)2 = 𝐼cm + 𝑀𝑅2 sin2 𝜃 
 

Where 𝐑 is the center of mass position, and 𝑀 is the 
total mass. The angle 𝜃 is the angle between 𝐑 and 

𝐧, or equvilently the angle between 𝐑 and 𝛚. 

 

 

Principal inertias 
There exists a set of coordinates in which �⃡� is 

diagonal with the three principal inertias 
𝐼1 = 𝐼𝑥𝑥          𝐼2 = 𝐼𝑦𝑦        𝐼3 = 𝐼𝑧𝑧  

In these set of coordinates, the rot. kinetic energy is  

𝑇rot =
1

2
𝐼1𝜔1

2 +
1

2
𝐼2𝜔2

2 +
1

2
𝐼3𝜔3

2 

 

Principle moment of inertia tensor 
One can construct a transform. matrix 𝐀 such that 

�⃡�𝐷 = 𝐀�⃡�𝐀 = (

𝐼1 0 0
0 𝐼2 0
0 0 𝐼3

)   

 where 𝐀 can be express in Eulers angles as shown 
earlier. The direction of the axes 𝑥′, 𝑦′ and 𝑧′ 

defined by 𝐀 are the principal axes. 
More mathematically speaking 

𝐼1, 𝐼2, and 𝐼3 are the eigenvalues of �⃡�𝐷 , and the direction 
vectors of the axes 𝑥′, 𝑦′ and 𝑧′ are the corresponding 

eigenvectors. 

Transforming inertial tensor 
If the principal moment of inertia tensor �⃡�𝐷 is known, 

one can find the inertia tensor �⃡� in any other set of axes 
through the center of mass by transformation 

 

 �⃡� = 𝐒�⃡�𝐷𝐒⊺ 
 

Where 𝐒 is the transformation matrix relating the 
principle set of axes and the new set of axes. 

Finding principal inertias and axes 
They are the roots of the secular cubic equation 

arising from 

|

𝐼𝑥𝑥 − 𝐼 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 − 𝐼 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧 − 𝐼
| = 𝟎  

 

For each of the roots above, one can solve  
�⃡�𝐷 = 𝐀�⃡�𝐀 

to obtain the direction of the principal axes. 

Finding by inspection: 
If the rigid body is a solid of revolution about some axis, 

where the origin of the body system is on the axis of 
symmetry, then the principal axes are the axis of 

symmetry and the two perpendicular axes located in the 
plane normal to the axis of symmetry. 

The axis of symmetry is the axis you can rotate 
about without the body changing appearance. 



 

  
                                RIGID BODY EQUATIONS OF MOTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Splitting of Lagrangian 
Given we can write 𝑇 = 𝑇tran + 𝑇rot  

and 𝑉 = 𝑉tran + 𝑉rot, we can also write the 
Lagrangian as 

 

ℒ(𝑞, �̇�) = ℒ𝑐(𝑞𝑐 , �̇�𝑐) + ℒ𝑏(𝑞𝑏 , �̇�𝑏) 
 

Where ℒ𝑐 involves the generalized coordinates of 
the center of mass 𝑞𝑐, and ℒ𝑏 involves the 

generalized coordinates of the orientation of the 
body about the center of mass 𝑞𝑏 

Eulers equations 
Working in terms of the system defined by the 

principal axes. If given a rigid body with rotational 
motion about the center of mass, or a fixed point, 

one can use Newtons 2nd law  

(
𝑑𝐋

𝑑𝑡
)

s
= (

𝑑𝐋

𝑑𝑡
)

b
+ 𝛚 × 𝐋 = 𝐍 

to derive the following equations of motion 
𝐼1�̇�1 − 𝜔2𝜔3(𝐼2 − 𝐼3) = 𝑁1 
𝐼2�̇�2 − 𝜔3𝜔1(𝐼3 − 𝐼1) = 𝑁2 
𝐼3�̇�3 − 𝜔1𝜔2(𝐼1 − 𝐼2) = 𝑁3 

If there are no net forces or torques applied on the 
rigid body, then 𝑁1 = 𝑁2 = 𝑁3 = 0, then the center 
of mass is either still of moving at constant speed. 

Heavy symmetrical top with one point fixed 
Let (𝑥, 𝑦, 𝑧) be the body axes, and (𝑥′, 𝑦′, 𝑧′) the space axes. 

 

The symmetry axis is designated as the 𝑧 axis and is one of 
the principal axes.  

The top is fixed at one point; thus, its configuration is 
completely specified by the Euler angles: 

 

𝜃 = The inclination of 𝑧 axis relative to 𝑧′-axis 
𝜙 = The azimuth of the top about the 𝑧′-axis      
𝜓 = The rotating angle of the top about the 𝑧-axis 
 

where the 𝑧-axis is the same as the vertical. 

The tops characteristic of motion is given by 
 

�̇� = bobbing up and down of the 𝑧 axis relative to the 𝑧′-axis. 
�̇� = precession/rotation of the 𝑧 axis about the 𝑧′-axis. 
�̇� = spinning/rotation of the top about the 𝑧-axis 
 

For many cases, such as this, we have �̇� ≫ �̇� ≫ �̇� 

The top is symmetric, meaning 𝐼1 = 𝐼2 ≠ 𝐼3, and kinetic energy 
becomes 

𝑇 =
1

2
𝐼1(𝜔1

2 + 𝜔2
2) +

1

2
𝐼3𝜔3

2 
 

Written in Euler angles is equal to 

𝑇 =
1

2
𝐼1(�̇�2 + �̇�2 sin2 𝜃) +

1

2
𝐼3(�̇� + �̇� cos 𝜃)

2
 

 

Let 𝐑 be the location of the center of mass, and 𝑀 be the 
total mass of the top, the potential energy becomes 

 

𝑉 = −𝑀𝐑 ⋅ 𝐠 = 𝑀𝑔𝑙 cos 𝜃 
 

Where 𝑙 is the distance from the 𝑥′𝑦′-plane to the center of 
mass 

The Lagrangian becomes 
 

ℒ =
1

2
𝐼1(�̇�2 + �̇�2 sin2 𝜃) +

1

2
𝐼3(�̇� + �̇� cos 𝜃)

2
− 𝑀𝑔𝑙 cos 𝜃 

 

And the system is conservative 
 

𝐸 = 𝑇 + 𝑉 = const. 
 

Figure axis 
The principal axis with highest moment of inertia. 

Symmetric top 
Rotating rigid body with two equal principal 

inertias. 

Potential in gravitational field 
In a uniform gravitational field, the potential of a 
body is the same as if the body was concentrated 

at the center of mass 

 

 

The generalized momentum to a rotation 
angle is the component of the total angular 

moment along the axis of rotation. Example, if 
𝜓 is about the 𝑧-axis in the body, then 𝑝𝜓 = 𝐿𝑧;  

 

 

Starting to solve the heavy symmetrical 
top with one point fixed 

The torque of gravity 𝐍 = 𝐑 × 𝐠 is along the 
line of nodes, since 𝐑 is along 𝑧′ and 𝐠 is along 

𝑧, and the line of nodes is perpendicular to 
both 𝑧 and 𝑧′. Thus, the torque along 𝑧 and 𝑧′ 

is zero, and the angular momentum along 
these axes must be constant since 𝑑𝐋/𝑑𝑡 = 𝐍 

𝜓 is rotation around 𝑧, thus 𝑝𝜓 = 𝐿3 = 𝐼3𝜔3.    
𝐿3 must be constant, and we can therefore 

write  𝑝𝜓 = 𝐼1𝑎 where 𝑎 some constant.  

𝜙 is rotating around 𝑧′ axis, and we can do the 
same for that one 𝑝𝜙 = 𝐼1𝑏 where 𝑏 is const. 

Using  𝑝𝜓 = 𝐼3𝜔3 = 𝐼1𝑎 and 𝑝𝜙 = 𝐼1𝑏 we show: 
 

�̇� =
𝑏 − 𝑎 cos 𝜃

sin2 𝜃
 ,   �̇� =

𝐼1𝑎

𝐼3

− cos 𝜃
𝑏 − 𝑎 cos 𝜃

sin2 𝜃
 

what remains is the function 𝜃 = 𝜃(𝑡) 

The above equations can be put into 𝐸, and we 
can write 

𝛼 = �̇�2 +
(𝑏 − 𝑎 cos 𝜃)2

sin2 𝜃
+ 𝛽 cos 𝜃 

 

where 𝛼 = (2𝐸 − 𝐼3𝜔3
2)/𝐼1   and    𝛽 = 2𝑀𝑔𝑙/𝐼1 

 

Letting 𝑢 = cos 𝜃 this can be further reduced to 
�̇�2 = (1 − 𝑢2)(𝛼 − 𝛽𝑢) − (𝑏 − 𝑎𝑢)3 

Finding a function 𝜃 = 𝜃(𝑡) can then be done 
by solving the following integral (by computer) 

𝑡 = ∫
𝑑𝑢

√(1 − 𝑢2)(𝛼 − 𝛽𝑢) − (𝑏 − 𝑎𝑢)3

𝑢(𝑡)

𝑢(0)

 

When 𝛽 = 0 we are dealing with a gyroscope, 
when 𝛽 > 0 we are dealing with a spinning 

top. A bit of information can be gathered by 
analyzing the function under the root: 

 

𝑓(𝑢) = �̇�2 = 𝛽𝑢3 − (𝛼 + 𝑎2)𝑢2 + (2𝑎𝑏 − 𝛽)𝑢 
+ (𝛼 − 𝑏2)                          
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Special theory of relativity postulates 
1. The laws of physics are the same in all inertial frames. 
2. The speed of light is the same in all inertial frames. 

Event in spacetime 
Something at a time 𝑡 and at a location 𝐫 = (𝑥, 𝑦, 𝑧) 

It can be represented by the vector (𝑐𝑡, 𝐫) = (𝑐𝑡, 𝑥, 𝑦, 𝑧) in 
Minkowski spacetime 

Spacetime interval 
(Δ𝑠)2 = (𝑐Δ𝑡)2 − (Δ𝑥2 + Δ𝑦2 + Δ𝑧2) 

The deltas represent differences between two events 𝐴 
and 𝐵. (Δ𝑡 = 𝑡𝐵 − 𝑡𝐴, Δ𝑥 = 𝑥𝐵 − 𝑥𝐴 etc.) 

Infinitesimal spacetime interval 
(𝑑𝑠)2 = (𝑐 𝑑𝑡)2 − (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) 

 

(𝑑𝑠)2 < 0 ⇒ Spacelike         (𝑑𝑠)2 = 0 ⇒  Lightlike  
 

(𝑑𝑠)2 > 0 ⇒  Timelike 
 
 
 

Invariant spacetime interval 
(𝑑𝑠)2 is the same in all inertial reference system as it 

describes a geometric quantity of Minkowski spacetime. 
 
 Proper time and laboratory time 

Proper time of a body is the time measured by a clock at 
rest with respect to that body. 

 

Laboratory time is the time measured by any other clock 
not at rest with respect to that body. 

 
Time dilation 

Consider a body at rest in frame 𝑆′ with proper time 𝜏. If 
the frame 𝑆′ is moving with speed 𝐯 relative to another 
frame 𝑆, the laboratory time 𝑡 measured in 𝑆 would be 

𝑡 = 𝜏/√1 − (𝑣/𝑐)2  ⇒ 𝜏 < 𝑡 
 
 

Homogeneous Lorentz boost along one axis 
Given two reference frames 𝑆 and 𝑆′ with parallel 

axes, and whose origin are the same at 𝑡 = 𝑡′ = 0. If 
𝑆′ travels at a speed 𝑣 relative to 𝑆 along the 

common 𝑥-axis, then we have 

[

𝑐𝑡′
𝑥′
𝑦′

𝑧′

] = [

𝛾 −𝛾𝛽 0 0
−𝛾𝛽 𝛾 0 0

0
0

0
0

1 0
0 1

] [

𝑐𝑡
𝑥
𝑦
𝑧

] 

 

𝛾 = 1/√1 − 𝛽2 is the Lorentz factor and  𝛽 = 𝑣/𝑐 

General homogeneous Lorentz boost 
Requires the axes of 𝑆 and 𝑆′ to be parallel.  

Four-vector form: 
𝑐𝑡′ = 𝛾(𝑐𝑡 − 𝛃 ⋅ 𝐫) 

𝐫′ = 𝐫 +
(𝛃 ⋅ 𝐫)𝛃(𝛾 − 1)

𝛽𝟐
− 𝛃𝛾𝑐𝑡 

where 𝛃 =
𝐯

𝑐
=

1

𝑐
(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) = (𝛽𝑥 ,  𝛽𝑦,  𝛽𝑧) 

 

Matrix form: 
(𝑐𝑡′, 𝑥′, 𝑦′, 𝑧′) = 𝐱′ = 𝐋𝐱 = 𝐋(𝑐𝑡, 𝑥, 𝑦, 𝑧) were 

 

𝐋 =

[
 
 
 
 

𝛾 −𝛾𝛽𝑥 −𝛾𝛽𝑦 −𝛾𝛽𝑧

−𝛾𝛽𝑥 𝐺𝛽𝑥
2 + 1 𝐺𝛽𝑦𝛽𝑥    𝐺𝛽𝑧𝛽𝑥

−𝛾𝛽𝑦

−𝛾𝛽𝑧

𝐺𝛽𝑥𝛽𝑦

𝐺𝛽𝑥𝛽𝑧

𝐺𝛽𝑦
2 + 1 𝐺𝛽𝑧𝛽𝑥

     𝐺𝛽𝑦𝛽𝑧    𝐺𝛽𝑧
2 + 1]

 
 
 
 

 

 

with 𝐺 = 𝛾2/(1 + 𝛾) 

To “flip” the boost, change the sign of the 𝛽 values. 

Velocity addition via Lorentz boosts (one axis) 
Given three frames 𝑆1, 𝑆2 and 𝑆3 all with parallel 𝑥-
axis. Let 𝑆2 move with speed 𝑣 relative to 𝑆1, and let 

𝑆3 move with speed 𝑣′ relative to 𝑆2. The Lorentz 
boost from 𝑆1 to 𝑆3 is given by 

 

𝐋1→3 = 𝐋2→3𝐋1→2 which equal 
 
 

𝐋1→3 = [

𝛾𝛾′(1 + 𝛽𝛽′) −𝛾𝛾′(𝛽 + 𝛽′) 0 0
−𝛾𝛾′(𝛽 + 𝛽′) 𝛾𝛾′(1 + 𝛽𝛽′) 0 0

0
0

0
0

1 0
0 1

] 

All frames discussed here are assumed to be inertial 
frames, i.e., Newtons 1st law holds. 

General homogeneous Lorentz 
transformation 

Given by a Lorentz boost 𝐋0, followed by a 
rotation 𝐑:     𝐋 = 𝐑𝐋0 

Pure Lorentz boost matrices are symmetric. If a 
Lorentz transform. not symmetric, it has a rotation. 

Thomas precession rotation 
Consider frames 𝑆1, 𝑆2, and 𝑆3. 𝑆2 is moving with 
velocity 𝛃 relative to 𝑆1, and 𝑆3 is moving with 

velocity 𝛃′′ relative to 𝑆2. Additionally, 𝑆3 is moving 
with velocity 𝛃′′ relative to 𝑆1 

Without loss of generality, we arrange the 𝑆1 axes 
such that 𝛃 is along the 𝑥-axis of 𝑆1, and 𝛃′ is in the 

𝑥′𝑦′-plane of 𝑆2. 

Both 𝐋1→2 and 𝐋2→3 are symmetric, but the total 
transformation 𝐋1→3 = 𝐋2→3𝐋1→2 is not, and must 
therefore correspond to a rotation 𝐑 and a boost. 

Notably, all off-diagonal values related to 𝑧 in 𝐋1→3 
are zero, implying a rotation about 𝑧-axis. 

Assuming 𝛃′ is small compared to 𝛃, and small 
compared to 𝑐, we can approximate 

𝐋1→3 ≈

[
 
 
 

𝛾′′ −𝛾′′𝛽𝑥
′′ −𝛾′′𝛽𝑦

′′ 0

−𝛾′′𝛽𝑥
′′ 𝛾′′ 0          0

−𝛾′′𝛽𝑦
′′

0

−𝛾′′𝛽𝑥
′′𝛽𝑦

′′

0

1         0
0         1 ]

 
 
 

 

And the rotation is 

𝐑 = [

1 0            0               0
0 1 (𝛾 − 1)𝛽𝑦

′′/𝛽 0

0
0

−(𝛾 − 1)𝛽𝑦
′′/𝛽

0

           1                0
           0                1

] 

Implying that 𝑆3 is rotated with respect to 𝑆1 around 
the 𝑧-axis by an infinitesimal angle 

ΔΩ = (𝛾 − 1)𝛽𝑦
′′/𝛽 

Consider an accelerating particle in 𝑆1. We 
imagine infinitely many inertial frames moving in 𝑆1, 

each representing the instantaneous velocity 𝐯 of 
the particle at a given time. Let 𝑆2 and 𝑆3 be two of 

these, separated by Δ𝑡 and Δ𝐯 = (0, 𝛽𝑦
′′𝑐, 0) 

Δ𝛀 = −(𝛾 − 1)(𝐯 × Δ𝐯)/𝑣2 which leads to the 
Thomas precession frequency 

𝛚 = 𝑑𝛀/𝑑𝑡 = −(𝛾 − 1)(𝐯 × 𝐚)/𝑣2 
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RELATIVISTIC COLLISIONS #1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four-vector notation 
A four vector 𝐴 is a vector with one time like component 
(index 0), and three spacelike components (index 1→3) 

𝑥𝜇 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) 

By convention, we choose Greek index letters (such as 
𝛼, 𝛽, 𝜇) to represent indexes 0 → 3, and Latin index letters 

(such as 𝑖) to represent indexes 1 → 3. 

The components of a four-vector can be expressed in a 
given coordinate basis {𝐞0, 𝐞1, 𝐞2, 𝐞3}, such that a point 

in spacetime is given as 𝑥𝜇𝐞𝜇 
 

Curves and the Tangent Vector 
Given an arbitrary one-dimensional curve 𝒫 in spacetime, 

where the curve is described by the parameter 𝜆, such 
that for a given 𝜆, a point on the curve can be written as 

𝑥0(𝜆),  𝑥1(𝜆),  𝑥2(𝜆), 𝑥3(𝜆) 
At the start of the curve, we have event 𝒜, and at the 
end of the curve we have event ℬ. Since 𝜆 represents 

how far along the curve we are, the four-vector from 𝒜 
to ℬ can be given by the tangent vector: 

𝑣 = (
𝑑𝒫

𝑑𝜆
)

𝜆=0
 

We assume 𝜆 to be continuous, there is therefor set of 
possible tangent vectors, and the set of those is called 
the vector field. The set of possible magnitudes of the 

tangent vector is called the scalar field.  

Time-like curves and Four-Velocity 
The parameter for the curve is often chosen to be the 

proper time 𝜏, and the laboratory coordinates becomes: 
𝑥0(𝜏) = 𝑐𝑡(𝜏),    𝑥1(𝜏) = 𝑥(𝜏),    𝑥2(𝜏) = 𝑦(𝜏),   𝑥3(𝜏) = 𝑧(𝜏) 

Since we now use the proper time as parameter, we 
denote the tangent vector as the four-velocity 𝑢 of the 

particle traveling along 𝒫 

𝑢0 =
𝑑𝑥0

𝑑𝜏
= 𝛾𝑐          𝑢𝑖 =  𝛾

𝑑𝑥𝑖

𝑑𝑡
= 𝛾𝑣𝑖 

Scalar product and Metric Tensor 
The metric tensor we use in spacetime is 

𝑔 = (

1 0 0 0
0 −1 0 0
0
0

0
0

−1
   0

0   
−1  

) 

The scalar product between two Four-vectors is  
𝑢 ⋅ 𝑣 = 𝑢𝛼𝑏𝛽𝑔𝛼𝛽 = 𝑢0𝑣0 − 𝑢1𝑣1 − 𝑢2𝑣2 − 𝑢3𝑣3 

 

1-Form 
The 1-form of a four-vector 𝑢 is 

𝑢𝛼 = 𝑔𝛼𝛽𝑢𝛽 = (𝑢0, −𝑢1, −𝑢2, −𝑢3) 

We can write the dot product now as 
𝑣 ⋅ 𝑢 = 𝑣𝛼𝑢𝛼 

 

Center-of-Momentum (COM) frame 
Frame where total momentum of all particles is zero. 

Electromagnetism 
Given the three-momentum 𝐩 of a particle, with 

charge 𝑞, velocity 𝐯, then 
𝑑𝐩

𝑑𝑡
= 𝑞(𝐄 + 𝐯 × 𝐁) 

 𝐄 and 𝐁 are the electric and magnetic fields 

The four-vector is sometimes referred to as the 
contravariant, and the 1-form referred to as the 

covariant. Note that 𝑣𝛼𝑢𝛼 always Lorentz invariant. 
Meaning no change in Lorentz transform. 

Four-momentum (a conserved quantity) 
𝑝𝜇 = (𝑝0, 𝑝1, 𝑝2, 𝑝3) = (𝐸/𝑐. 𝑝𝑥 , 𝑝𝑦𝑝𝑧) 

Particle collisions | Part 1 
Two particles of mass 𝑚1 and 𝑚2 collide and 

produces a set of particles with mass 𝑚𝑟, 𝑟 = 3,4,5, … 
 

 

The total four-momentum in the COM frame (primed) 
𝑃𝜇 ′ is equal to  

 

𝑝1
𝜇
′ + 𝑝2

𝜇
′ = 𝑃𝜇 ′ = (𝐸′/𝑐, 0,0,0) 

 
 

 

It is convenient to look at the COM system as a 
system of a composite mass particle, and by the 

energy-momentum relation 
𝐸 = √(𝑝𝑐)2 + (𝑚𝑐2)2 

 

we can write 𝑀 = 𝐸′/𝑐2 since 𝑝′ = 0, which yields 
 

𝑃𝜇′ = (𝑀𝑐, 0,0,0) 
 

 

The quantity 𝑃𝜇′𝑃𝜇′ is Lorentz invariant, meaning 
 

𝑃𝜇𝑃𝜇 = 𝑃𝜇′𝑃𝜇′
= 𝑀2𝑐2 

 

where unprimed is lab frame. It can also be given as 
 

𝑃𝜇𝑃𝜇 = (𝑚1
2  + 𝑚2

2)𝑐2 − 2𝑝1𝜇𝑝2
𝜇 

 

by the initial particles in the lab frame. 
 

We can thus write 
𝐸′2 = 𝑀2𝑐4 = (𝑚1 + 𝑚2)2𝑐4 + 2(𝐸1𝐸2 − 𝑐2𝐩1𝐩2) 

 
 

Suppose particle 2 is initially stationary in the lab. 
frame, then 𝐩2 = 0 and 𝐸2 = 𝑚2𝑐2 and we have 

 

𝐸′2 = 𝑀2𝑐4 = (𝑚1
2 + 𝑚2

2) 𝑐4 + 2𝐸1𝑚2𝑐2 
 

Which can be simplified to 
 

𝐸′2 = 𝑀2𝑐4 = (𝑚1 + 𝑚2)2𝑐4 + 2𝑚2𝑐2𝑇1 
 

where 𝑇1 is particle 1 kinetic energy in lab frame. 
Note that 𝐸′ increases as the root of 𝑇1. 

Lowest energy threshold for a reaction (other then 
elastic scattering) happens when all product particles 
have zero momentum. Total four-momentum after 

reaction is noted as 𝑃𝜇′′. At threshold we have 
 

𝑃𝜇
′′𝑃𝜇′′

= (Σ𝑟𝑚𝑟)2𝑐2 
 

which by conservation must equal 𝑃𝜇𝑃𝜇 , this gives us 
a threshold energy of 

 

𝑇1

𝑚1𝑐2
=

𝑄2 + 2𝑄(𝑚1 + 𝑚2)𝑐2

2𝑚1𝑚2𝑐4
 

 

where 𝑄 is the “Q value of the reaction”: 
 

𝑄 ≡ [Σ𝑟𝑚𝑟 − (𝑚1 + 𝑚2)]𝑐2 
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RELATIVISTIC COLLISIONS #2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Homogenous function of 𝒌-th degree 
A function 𝑓(𝑥1, … , 𝑥𝑛) is homogeneous of 𝑘-th degree if  
𝑓(𝑠𝑥1, … , 𝑠𝑥𝑛) = 𝑠𝑘𝑓(𝑥1, … , 𝑥𝑛),       where 𝑘 is an integer. 

 

Particle collisions | Part 2 
If we are dealing with an elastic scattering instead  

1 + 2 → 3 + 4. Where 3 is the scattered incident 
particle (1), and 4 is the recoiled target particle (2) 

then we have the following: 
 

 

We let particle 1 initially travel along the +𝑧-axis. The 
incident and scattered momentum vectors define a 
plane that is invariant under Lorentz transformation. 

We take it to be the 𝑥𝑧-plane with no loss of generality 
 

 

The Lorentz transform from COM to lab is defined by 

𝛾 =
𝑇1 + (𝑚1 + 𝑚2)𝑐2

√2𝑚2𝑐2𝑇1 + (𝑚1 + 𝑚2)2𝑐4
     𝛃 =

𝐩1𝑐

𝑇1 + (𝑚1 + 𝑚2)𝑐2
 

 

 

We get by Lorentz transformation that 

𝑝1
0′

= 𝛾 (
𝐸1

𝑐
− 𝛽𝑝1)        𝑝1

3′
= 𝛾 (𝑝1 −

𝛽𝐸1

𝑐
) 

 

If 𝜃 is the angle between 𝐩3
′  and 𝐩1

′ , then in COM frame 
 

𝑝3
1′

= 𝑝1
′ sin 𝜃       𝑝3

3′
= 𝑝1

′ cos 𝜃      𝑝3
0′

= 𝑝1
0′

= 𝐸1
′/𝑐 

 

which in the lab frame is 
𝑝3

1 = 𝑝3
1′

= 𝑝1
′ sin 𝜃 

𝑝3
3 = 𝛾(𝑝3

3′
− 𝛽𝑝3

0′
) = 𝛾 (𝑝1

′ cos 𝜃 +
𝛽𝐸1

′

𝑐
) 

𝑝3
0 = 𝛾(𝑝3

0′
+ 𝛽𝑝3

3′
) = 𝛾 (

𝐸1
′

𝑐
+ 𝛽𝑝1

′ cos 𝜃) 

And 
𝐸3 = 𝐸1 − 𝛾2𝛽(1 − cos 𝜃)(𝑝1𝑐 − 𝛽𝐸1) 

 

𝜃 in the lab frame is noted as 𝜙, and we have 

tan 𝜙 =
sin 𝜃

𝛾(cos 𝜃 + 𝛽𝑐/𝑣1
′)

 

 

or it can be written as 
 

tan 𝜙 =
sin 𝜃

𝛾[cos 𝜃 + 𝜌𝑔(𝜌, 𝜖1)]
 

 
where 𝜌 = 𝑚1/𝑚2 and 𝜖1 = 𝑇1/(𝑚1𝑐2) and 

 

𝑔(𝜌, 𝜖1) =
1 + 𝜖1 + 𝜌

√2𝜌𝜖1 + (1 + 𝜌)2
 

 

Difference from Lagrangian formalism 
Lagrangian formulation: 
A system of 𝑛 degrees of freedom have 𝑛 second order 

equations of motions expressed by the 𝑛 degrees of 
freedom (generalized coordinates) 𝑞𝑖:  

 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕�̇�𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 0 

 

These require 2𝑛 initial values to be completely solved. 
The 𝑛-degrees of freedom 𝑞𝑖 span out a 𝑛-dim. 

configuration space. 

Hamiltonian formulation: 
A system of 𝑛 degrees of freedom have 2𝑛 first order 
equations of motions expressed in 2𝑛 independent 

variables: 

𝑞𝑖 =
𝜕ℋ

𝜕𝑝𝑖
      �̇�𝑖 = −

𝜕ℋ

𝜕𝑞𝑖
 

The 2𝑛 independent variables span out a 2𝑛-dim. phase 
space. Coords. in phase space are canonical. 

 

Lagrangian → Hamiltonian 
Used to convert functions of one quantity, into 

functions of the conjugate quantity. 
 

 

From Lagrangian to Hamiltonian: 
We have ℒ = ℒ(𝑞, �̇�, 𝑡) and we want a function 

ℋ = ℋ(𝑞, 𝑝, 𝑡).  
 

The differential of ℒ is 

𝑑ℒ =
𝜕ℒ

𝜕𝑞𝑖
𝑑𝑞𝑖 +

𝜕ℒ

𝜕�̇�𝑖
𝑑�̇�𝑖 +

𝜕ℒ

𝜕𝑡
𝑑𝑡 

 

We can write this as 

𝑑ℒ = �̇�𝑖𝑑𝑞𝑖 + 𝑝𝑖𝑑�̇�𝑖 +
𝜕ℒ

𝜕𝑡
𝑑𝑡 

We want a function that depends on 𝑝 instead 
of �̇�, thus the Hamiltonian is generated by the 

Legendre transformation 
ℋ(𝑞, 𝑝, 𝑡) = �̇�𝑖𝑝𝑖 − ℒ(𝑞, �̇�, 𝑡) 

 

which has differential  

𝑑ℋ = �̇�𝑖𝑑𝑝𝑖 − �̇�𝑖𝑑𝑞𝑖 −
𝜕ℒ

𝜕𝑡
𝑑𝑡 

Which can also be expressed as 

𝑑ℋ =
𝜕ℋ

𝜕𝑝𝑖
𝑑𝑝𝑖 +

𝜕ℋ

𝜕𝑞𝑖
𝑑𝑞𝑖 +

𝜕ℋ

𝜕𝑡
𝑑𝑡 

 

Implying the 2𝑛 + 1 relations 

𝑞𝑖 =
𝜕ℋ

𝜕𝑝𝑖
      − �̇�𝑖 =

𝜕ℋ

𝜕𝑞𝑖
       and   −

𝜕ℒ

𝜕𝑡
=

𝜕ℋ

𝜕𝑡
  

The first two of which are known as the 
canonical equations of Hamilton 

 
 
 

Finding the Hamiltonian as a function of  
In many problems, the Lagrangian can be expressed as a sum 

of functions homogenous of the generalized velocities of 
degree 0,1, and 2. In those cases we can write 

 

  ℋ = �̇�𝑖𝑝𝑖 − ℒ                                                                
             ℋ = �̇�𝑖𝑝𝑖 − [ℒ0(𝑞𝑖, 𝑡) + ℒ1(𝑞𝑖, 𝑡)�̇�𝑘 + ℒ2(𝑞𝑖, 𝑡)�̇�𝑘�̇�𝑚] 

 

ℒ0 is the part of ℒ not dependent �̇�𝑖. 
 

ℒ1 is the coefficient of the part of ℒ that is homogenous 
in �̇�𝑖 of first degree. 
 

ℒ2 is the coefficient of the part of ℒ that is homogenous 
in �̇�𝑖 of second degree. 

 
 
 
 

Hamiltonian equal to total energy 
If the equations defining the generalized 
coordinates are time independent, then 

ℒ2�̇�𝑘�̇�𝑚 = 𝑇 
If the forces are derivable from a conservative 

potential 𝑉, then 
ℒ0 = −𝑉 

If both these are fulfilled, then ℋ = 𝑇 + 𝑉 = 𝐸 
 
 

If 𝑡 is not explicitly in ℒ, then 𝑡 is not present in ℋ, and thus ℋ 
is constant in time. If ℋ = 𝐸 then energy is conserved. 
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Time as a canonical coordinate 
Time 𝑡 must be treated as a canonical coordinate 

with a conjugate momentum.  

The trajectory of a system in phase space can be 
marked by some parameter 𝜃 and 𝑡. 

The Lagrangian Λ in the configuration space is 

Λ(𝑞, 𝑞′, 𝑡, 𝑡′) = 𝑡′ℒ (𝑞,
𝑞′

𝑡′
, 𝑡) 

where primed is derivative with respect to 𝜃. 

The conjugate momentum of 𝑡 is 
 

𝑝𝑡 =
𝜕Λ

𝜕𝑡′
= ℒ + 𝑡′

𝜕ℒ

𝜕𝑡′
 

By utilizing that �̇� = 𝑞′/𝑡′ this can be written as 

𝑝𝑡 = ℒ −
𝑞𝑖′

𝑡′

𝜕ℒ

𝜕�̇�𝑖
= ℒ − �̇�𝑖

𝜕ℒ

𝜕�̇�𝑖
= −ℋ 

 
 Covariant Lagrangian and Hamiltonian 

For a single free particle, we have Lagrangian 

Λ(𝑥𝜇 , 𝑢𝜇) =
1

2
𝑚𝑢𝜇𝑢𝜇 

and Hamiltonian is 

𝐻𝑐 =
𝑝𝜇𝑝𝜇

2𝑚
 

Where 𝑢𝜇 is the four-velocity of the particle, 𝑝𝜇 is 
the four-momentum of the particle, and 𝑚 the 

particles mass.  

Equations of motion 
 A system of one particle leads us via the 

covariant Hamiltonian 𝐻𝑐 to these eight first-
order equations of motions 

𝑑𝑥𝛼

𝑑𝜏
=

𝜕𝐻𝑐
′𝑔𝛼𝛽

𝜕𝑝𝛽
,      

𝑑𝑝𝛼

𝑑𝜏
=

𝜕𝐻𝑐𝑔𝛼𝛽

𝜕𝑥𝛽
 

Note that only the spatial equations (indexes 1 
through 3) are of interest 

CANONICAL TRANSFORMATIONS #1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All 𝒒𝒊 cyclic 
If all 𝑞𝑖 are cyclic, then all 𝑝𝑖 = 𝛼𝑖 are constant. If 

additionally the Hamiltonian is constant in time, then 
ℋ = ℋ(𝛼𝑖) and the equations of motions are 

�̇�𝑖 =
𝜕ℋ

𝜕𝛼𝑖
= 𝜔𝑖 = const. ⇒ 𝑞𝑖 = 𝜔𝑖𝑡 + 𝛽𝑖 

 
 
 
 
 
 
 
 

Point transformations 
Going from one set of generalized coordinates 𝑞𝑖 

to another.  

Point transformation of configuration space: 
𝑄𝑖 = 𝑄𝑖(𝑞, 𝑡) 

Point transformation of phase space: 
𝑄𝑖 = 𝑄𝑖(𝑞, 𝑝, 𝑡) 
𝑃𝑖 = 𝑃𝑖(𝑞, 𝑝, 𝑡) 

When dealing with the Lagrangian, the first one is enough. But 
when dealing with the Hamiltonian, the generalized momenta 

is independent variables which also need to be considered. 
 

Canonical transformation 
Transformation from the set of coordinates (𝑞, 𝑝) 

to the set (𝑄, 𝑃) need to satisfy 

𝑝𝑖𝑞𝑖 − ℋ = 𝑃𝑖𝑄𝑖 − 𝐾 +
𝑑𝐹

𝑑𝑡
 

Where 𝐾 is the Hamiltonian in the new set of 
coordinates (sometimes called the Kamiltonian), 

and 𝐹 is a function of the phase space coordinates. 
 
 Example of canonical transformation 

Suppose 𝐹 where given as 𝐹 = 𝐹1(𝑞, 𝑄, 𝑡), then 

𝑝𝑖𝑞𝑖 − ℋ = 𝑃𝑖𝑄𝑖 − 𝐾 +
𝑑𝐹1

𝑑𝑡
                                      

               = 𝑃𝑖𝑄𝑖 − 𝐾 +
𝜕𝐹1

𝜕𝑡
+

𝜕𝐹1

𝜕𝑞𝑖
�̇�𝑖 +

𝜕𝐹1

𝜕𝑄𝑖
�̇�𝑖 

For both sides to be equal, we need 

𝑝𝑖 =
𝜕𝐹1

𝜕𝑞𝑖
           𝑃𝑖 = −

𝜕𝐹1

𝜕𝑄𝑖
        𝐾 = 𝐻 +

𝜕𝐹1

𝜕𝑡
 

These are the transformation equations 
 

We would first solve all 𝑝𝑖 which would become a 
functions of 𝑞𝑗,𝑄𝑗 and 𝑡. Which could assumingly 

be inverted to become functions of 𝑄𝑖 , which 
would then be used on the middle equation to 

solve for all 𝑃𝑖. Finally, the third equation gives us 
the Kamiltonian, which we could then express with 

𝑄 and 𝑃 

The Four Basic Canonical Transformations 
 

𝐹 = 𝐹1(𝑞, 𝑄, 𝑡) 𝑝𝑖 =
𝜕𝐹1

𝜕𝑞𝑖
     𝑃𝑖 = −

𝜕𝐹1

𝜕𝑄𝑖
 

 
If 𝐹1 = 𝑞𝑖𝑄𝑖 then 𝑄𝑖 = 𝑝𝑖  and 𝑃𝑖 = −𝑞𝑖 

 

𝐹 = 𝐹2(𝑞, 𝑃, 𝑡) − 𝑄𝑖𝑃𝑖 𝑝𝑖 =
𝜕𝐹2

𝜕𝑞𝑖
     𝑄𝑖 =

𝜕𝐹2

𝜕𝑃𝑖
 

 
If 𝐹2 = 𝑞𝑖𝑃𝑖 then 𝑄𝑖 = 𝑞𝑖  and 𝑃𝑖 = 𝑝𝑖 

 

𝐹 = 𝐹3(𝑝, 𝑄, 𝑡) + 𝑞𝑖𝑝𝑖 𝑞𝑖 = −
𝜕𝐹3

𝜕𝑝𝑖
     𝑃𝑖 = −

𝜕𝐹3

𝜕𝑄𝑖
 

 
If 𝐹3 = 𝑝𝑖𝑄𝑖 then 𝑄𝑖 = −𝑞𝑖  and 𝑃𝑖 = −𝑝𝑖 

 

𝐹 = 𝐹4(𝑝, 𝑃, 𝑡) − 𝑄𝑖𝑃𝑖 𝑞𝑖 = −
𝜕𝐹4

𝜕𝑝𝑖
     𝑄𝑖 = −

𝜕𝐹4

𝜕𝑃𝑖
 

 
If 𝐹4 = 𝑝𝑖𝑃𝑖 then 𝑄𝑖 = 𝑝𝑖  and 𝑃𝑖 = −𝑞𝑖 

 
 

Canonical transformation Harmonic Oscillator 

Hamiltonian is ℋ =
1

2𝑚
(𝑝2𝑚𝜔2𝑞2). If one transforms 

𝑝 = 𝑓(𝑃) cos 𝑄 and 𝑞 = sin 𝑄 𝑓(𝑃)/𝑚𝜔 then we get 
𝐾 = 𝑓2(𝑃)/2𝑚 which is cyclic for 𝑄. 

By using the first basic transform 𝐹1 = cot 𝑄  𝑚𝜔𝑞2/2 
we eventually end up with 𝐾 = 𝜔𝑃 and we get 

�̇� =
𝜕𝐾

𝜕𝑃
= 𝜔 ⇒ 𝑄 = 𝜔𝑡 + 𝛼 

  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 CANONICAL TRANSFORMATIONS #2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Restricted canonical transformation 
Time independent canonical transformation 

𝑄𝑖 = 𝑄𝑖(𝑞, 𝑝)      𝑃𝑖 = 𝑃𝑖(𝑞, 𝑝) 
Important: The Hamiltonian does not change in such 

transformations ℋ = 𝐾 

 
 
 
 
 

Symplectic notation for Restricted Canonical 
For restricted canonical transformation, the 

equations of motion of the old coordinates is 

�̇� = 𝐉
𝜕ℋ

𝜕𝛈
 

Where 𝛈 is a column matrix of the 2𝑛 old 
coordinates 𝑞𝑖 and 𝑝𝑖 , and the 𝐉 matrix is defined as 

 

𝐉 = [
𝟎 𝟏

−𝟏 𝟎
] 

i.e., a 2𝑛 × 2𝑛 matrix composed by four 𝑛 × 𝑛 zero 𝟎 
and unit 𝟏 matrices. 

The restricted canonical transformation can be 
written as 
𝛇 = 𝛇(𝛈) 

where 𝛇 is a column matrix of the 2𝑛 new 
coordinates 𝑄𝑖 and 𝑃𝑖  

The equations of motion of the new coordinates is 

𝜁̇ =
𝜕𝜁𝑖

𝜕𝜂𝑖
�̇�𝑖 

which in symplectic notation can be written as 

�̇� = 𝐌�̇� = 𝐌𝐉
𝜕𝓗

𝜕𝛈
= 𝐌𝐉𝐌⊺

𝜕ℋ

𝜕𝛇
= 𝐉

𝜕ℋ

𝜕𝛇
 

where 𝐌 is the Jacobian matrix of the 
transformation with elements 

𝑀𝑖𝑗 =
𝜕𝜁𝑖

𝜕𝜂𝑗
 

 

Infinitesimal canonical transformation (I.C.T) 
𝑄𝑖 = 𝑞𝑖 + 𝛿𝑞𝑖      𝑃𝑖 = 𝑝𝑖 + 𝛿𝑝𝑖 

In matrix form: 𝛇 = 𝛈 + 𝛿𝛈 

A suitable generation function would be 
𝐹2 = 𝑞𝑖𝑃𝑖 + 𝜖𝐺(𝑞, 𝑃, 𝑡) 
wherein we can write 

𝛿𝛈 = 𝜖𝐉
𝜕𝐺

𝜕𝛈
= 𝜖[𝛈, 𝐺] 

If 𝐺 = ℋ, and we let 𝜖 = 𝑑𝑡 then 
𝛿𝛈 = 𝑑𝑡[𝛈, ℋ] = �̇�𝑑𝑡 = 𝑑𝐧 

 

i.e., the evolution of a system is a continuous application of 
I.C.T’s with the Hamiltonian as the generator function. 

 

Poisson bracket 
Poisson bracket of two functions 𝑢 and 𝑣 with 

respect to canonical variables (𝑞, 𝑝) is  

[𝑢, 𝑣]𝑞,𝑝 =
𝜕𝑢

𝜕𝑞𝑖

𝜕𝑣

𝜕𝑝𝑖
−

𝜕𝑢

𝜕𝑝𝑖

𝜕𝑣

𝜕𝑞𝑖
 

 

In matrix form 

[𝑢, 𝑣]𝛈 = (
𝜕𝑢

𝜕𝛈
)

⊺

𝐉 (
𝜕𝑣

𝜕𝛈
) 

If 𝑢 and 𝑣 are canonical coordinates themselves 
 [𝑞𝑗, 𝑞𝑘]

𝑞,𝑝
= 0 = [𝑝𝑗, 𝑝𝑘]

𝑞,𝑝
 

       [𝑞𝑗, 𝑝𝑘]
𝑞,𝑝

= 𝛿𝑗𝑘 = −[𝑝𝑗, 𝑞𝑘]
𝑞,𝑝

 

In matrix form 
[𝛈, 𝛈]𝛈 = 𝐉 

where the square matrix Poisson bracket [𝛈, 𝛈] has 
elements 𝑙𝑚 equal to [𝜂𝑙 , 𝜂𝑚] 

Symplectic vs Regular 
One can use both concepts/notations. They have a 

connection, but that is irrelevant. Both are great 
tools of looking at canonical transformations. 

 
 

All Poisson brackets are invariant under 
canonical transformation 

  
 

Poisson bracket properties 
[𝑢, 𝑢] = 0         [𝑢, 𝑣] = −[𝑣, 𝑢] 

 

[𝑎𝑢 + 𝑏𝑣, 𝑤] = 𝑎[𝑢, 𝑤] + 𝑏[𝑣, 𝑤] 
 

[𝑢𝑣, 𝑤] = [𝑢, 𝑤]𝑣 + 𝑢[𝑣, 𝑤] 
 

[𝑢, [𝑣, 𝑤]] + [𝑣, [𝑤, 𝑢]] + [𝑤, [𝑢, 𝑣]] = 0 
The last one being called Jacobi’s identity. 

 
 
 

Invariant phase space volume 
After a canonical transform 𝛈 → 𝛇 the phase space 

volume element is conserved 
(𝑑𝜂) = 𝑑𝑞1 … 𝑑𝑞𝑛𝑑𝑝1 … 𝑑𝑝𝑛 

= (𝑑𝜁) = 𝑑𝑄1 … 𝑑𝑄𝑛𝑑𝑄1 … 𝑑𝑄𝑛  
and the phase space volume is invariant 

 

Poisson bracket formulation 
Time derivative of a function 𝑢(𝑞, 𝑝, 𝑡) is 

𝑑𝑢

𝑑𝑡
= [𝑢, ℋ] +

𝜕𝑢

𝜕𝑡
 

If 𝑢 is one of the canonical variables 𝑞𝑖 or 𝑝𝑖 
𝑞𝑖 = [𝑞𝑖, ℋ]      𝑝𝑖 = [𝑝𝑖 , ℋ] 

�̇� = [𝛈, ℋ] 
If 𝑢 is ℋ itself then 

𝑑ℋ

𝑑𝑡
=

𝜕ℋ

𝜕𝑡
 

If 𝑢 is constant of motion, then 

[ℋ, 𝑢] =
𝜕𝑢

𝜕𝑡
 

 
 

I.C.T rotation and Canonical Angular Momentum 
Imagine a I.C.T where we rotate the system by 𝑑𝜃 

around the 𝑧-axis 
𝛿𝑥𝑖 = −𝑦𝑖𝑑𝜃        𝛿𝑦𝑖 = 𝑥𝑖𝑑𝜃        𝛿𝑧𝑖 = 0 

𝛿𝑝𝑖𝑥 = −𝑝𝑖𝑦𝑑𝜃       𝛿𝑝𝑖𝑦 = 𝑝𝑖𝑥𝑑𝜃       𝛿𝑝𝑖𝑧 = 0 
This corresponds to 𝐺 = 𝑥𝑖𝑝𝑖𝑦 − 𝑦𝑖𝑝𝑖𝑥 and 𝜖 = 𝑑𝜃 

The generating function 𝐺 is the 𝑧-component of the 
total canonical angular momentum 

𝐺 = 𝐿𝑧 ≡ (𝑟𝑖 × 𝑝𝑖)𝑧 
More generally, given a unit vector 𝐧 for the axis 

rotated about, we have  𝐺 = 𝐋 ⋅ 𝐧 

Let 𝑢 be a function of the system config. and each 
point in phase-space is given by a parameter 𝛼: 

𝑢(𝛼) = 𝑢0 + 𝛼[𝑢, 𝐺]0 +
𝛼2

2!
[[𝑢, 𝐺], 𝐺]

0
              

                                              +
𝛼3

3!
[[[𝑢, 𝐺], 𝐺], 𝐺]

0
+ ⋯  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CANONICAL TRANSFORMATIONS #3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rotation of system vectors 
If 𝐅 is a vector function of the only the system config. 
(𝑞, 𝑝) (i.e. a system vector), then the change in 𝐅 by an 
I.C.T rotation 𝑑𝜃 about an axis defined by unit vector  

𝐧 is 
 

𝑑𝐅 = 𝑑𝜃[𝐅, 𝐋 ⋅ 𝐧] = 𝐧𝑑𝜃 × 𝐅 
 

which implies the Poisson bracket identities 
[𝐅, 𝐋 ⋅ 𝐧] = 𝐧 × 𝐅 
[𝐅 ⋅ 𝐆, 𝐋 ⋅ 𝐧] = 0 
[𝐿2, 𝐋 ⋅ 𝐧] = 0 

[𝐿𝑖, 𝐿𝑗] = 𝜖𝑖𝑗𝑘𝐿𝑘 
[𝑝𝑖, 𝐿𝑗] = 𝜖𝑖𝑗𝑘𝑝𝑘 

One common example: If 𝐅 = 𝐩 and 𝐧 = 𝐤 then 
[𝑝𝑥 , 𝑥𝑝𝑦 − 𝑦𝑝𝑥] = −𝑝𝑦 
[𝑝𝑦, 𝑥𝑝𝑦 − 𝑦𝑝𝑥] = 𝑝𝑥      
[𝑝𝑧, 𝑥𝑝𝑦 − 𝑦𝑝𝑥] = 0      

 
 

Three-dimension Levi-Civita symbol 

𝜀𝑖𝑗𝑘 = {

−1  if (𝑖, 𝑗, 𝑘) is (𝑧, 𝑦, 𝑥), (𝑥, 𝑧, 𝑦), or (𝑦, 𝑥, 𝑧)

0   if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖                           

  1  if (𝑖, 𝑗, 𝑘) is (𝑥, 𝑦, 𝑧), (𝑦, 𝑧, 𝑥), or (𝑧, 𝑥, 𝑦)
 

HAMILTON-JACOBI THEORY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving mechanical problems with Canonical 
transformations | TWO METHODS 

 
1. If ℋ is conserved, then the equations of 

emotions are trivial to find if one does a 
canonical transformation to new canonical 
coordinates that lead to all 𝑞𝑖 being cyclic 
 

2. Find a canonical transformation from (𝑞, 𝑝) at 
time 𝑡 to (𝑞0, 𝑝0) at time 𝑡0. The equations of 
transformations  

𝑞 = 𝑞(𝑞0, 𝑝0, 𝑡) 
𝑝 = 𝑝(𝑞0, 𝑝0, 𝑡) 

 

will be the equations of motions. 

Hamilton-Jacobi equation and method 

ℋ (𝑞1, … , 𝑞𝑛;  
𝜕𝐹2

𝜕𝑞𝑖
, … ,

𝜕𝐹2

𝜕𝑞𝑛
;   𝑡) +

𝜕𝐹2

𝜕𝑡
= 0 

 

The generating function  
𝐹2 = 𝑆 = 𝑆(𝑞1, … , 𝑞𝑛;  𝛼1, … , 𝛼𝑛;   𝑡) 

 

which fulfills this equation is called Hamilton’s 
principal function and assures that the new 

coordinates 𝑄, 𝑃 are constant in time 

We end up with the transformation equations 

𝑃𝑖 = 𝛼𝑖 = "const."    𝑝𝑖 =
𝜕𝑆

𝜕𝑞𝑖
      𝑄𝑖 =

𝜕𝑆

𝜕𝛼𝑖
= 𝛽𝑖 =

”const. "  
Which can be used to find 

𝑞𝑗 = 𝑞𝑗(𝛼, 𝛽, 𝑦)   and    𝑝𝑗 = 𝑝𝑗(𝛼, 𝛽, 𝑡) 
Which is the Hamiltonian equations of motion 

where 𝛼 and 𝛽 is found by given some initial value 
𝑞0, 𝑝0 at 𝑡 = 𝑡0 

If ℋ not explicitly dependent on time, 𝑡, then 
 

𝑆(𝑞, 𝛼, 𝑡) = 𝑊(𝑞, 𝛼) − 𝑎𝑡 
 

with 𝑊 called Hamilton’s characteristic function 

Hamilton-Jacobi method 2 example 
One dimensional harmonic oscillator 

ℋ =
1

2𝑚
(𝑝2+𝑚2𝜔2𝑞2) = 𝐸      𝜔 = √𝑘/𝑚 

We set 𝑝 = 𝜕𝑆/𝜕𝑞 and write ℋ as a function of 
𝑞 and 𝜕𝑆/𝜕𝑞 and thus have the Hamilton-Jacobi 

1

2𝑚
[(

𝜕𝑆

𝜕𝑞
)

2

+𝑚2𝜔2𝑞2] +
𝜕𝑆

𝜕𝑡
= 0 

ℋ not expl. dep. on 𝑡, thus 𝑆 =  𝑊(𝑞, 𝛼) − 𝑎𝑡  
1

2𝑚
[(

𝜕𝑊

𝜕𝑞
)

2

+𝑚2𝜔2𝑞2] = 𝛼    ⇒     𝐸 = 𝛼 

By immediate integration we obtain 

𝑊 = 𝛼∫ √1 − 𝑚𝜔2𝑞2/(2𝛼) 𝑑𝑞 

𝑆 = √2𝑚𝛼∫ √1 − 𝑚𝜔2𝑞2/(2𝛼) 𝑑𝑞 − 𝛼𝑡 

𝛽 =
𝜕𝑆

𝜕𝛼
= asin(𝑞)√

𝑚𝜔2

2𝛼
− 𝑡 

We thus have the equations of motions 

⇒ 𝑞 = √
2𝛼

𝑚𝜔2
sin(𝜔𝑡 + 𝛽) 

𝑝 =
𝜕𝑆

𝜕𝑞
= √2𝑚𝛼 − 𝑚2𝜔2𝑞2 = √2𝑚𝛼 cos(𝜔𝑡 + 𝛽) 

Two dimensional anisotropic harmonic oscillator 

ℋ =
1

2𝑚
(𝑝𝑥

2+𝑝𝑦
2 + 𝑚2𝜔𝑥

2𝑥2+, 𝑚2𝜔𝑦
2𝑦2) = 𝐸  

𝜔𝑥 = √𝑘𝑥/𝑚      𝜔𝑦 = √𝑘𝑦/𝑚     

Here the coordinates and momenta separate 
into two to sets, we can thus write 

𝑆(𝑥, 𝑦, 𝛼, 𝛼𝑦, 𝑡) = 𝑊𝑥(𝑥, 𝛼) + 𝑊𝑦(𝑦, 𝛼𝑦) − 𝛼𝑡 

1

2𝑚
[(

𝜕𝑊

𝜕𝑥
)

2

+𝑚2𝜔𝑥
2𝑥2] = 𝛼𝑥 

1

2𝑚
[(

𝜕𝑊

𝜕𝑦
)

2

+𝑚2𝜔𝑦
2𝑦2] = 𝛼𝑥 

 

with 𝛼 = 𝛼𝑥 + 𝛼𝑦 = 𝐸 

Hamilton-Jacobi method 1 
If ℋ is conserved, then we have the restricted 

Hamilton-Jacobi equation 

ℋ (𝑞𝑖,
𝜕𝑊

𝜕𝑞𝑖
) = 𝛼𝑖 

Since ℋ not expl. dep. on time, we have  
ℋ = 𝐾 = 𝛼1 thus 𝑊 generates canonical 

transformations where all new coordinates 𝑄𝑖 are 
cyclic. We thus have 𝑃𝑖 = 𝛼𝑖 and 

𝑄1 = 𝑡 + 𝛽1 =
𝜕𝑊

𝜕𝛼1
           𝑄𝑖 = 𝛽𝑖 =

𝜕𝑊

𝜕𝛼𝑖
, 𝑖 ≠ 1 

Separation of variables 
If 𝑆(𝑞, 𝛼, 𝑡) = 𝑆1(𝑞1, 𝛼, 𝑡) + 𝑆′(𝑞𝑖≠1, 𝛼, 𝑡) then we can 
separate Hamil-Jaco. into one equation for 𝑞1 and 
𝑛 − 1 for 𝑞𝑖≠1. It is completely separable if 𝑆 = Σ𝑖𝑠𝑖 

wherein we can have 𝑛 Hamil-Jaco. equations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                 CONTINOUS SYSTEMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuous index 
Just as 𝑖 is used to represent different discrete 
indexes of generalized coordinates 𝜂𝑖 , we use 

continuous indexes 𝑥, 𝑦, 𝑧 (one for each dimension) 
to represent continuous coordinates 𝜂(𝑥, 𝑦, 𝑧, 𝑡). 

Lagrangian density 
For continuous systems, we have 

ℒ = ∫ ∫ ∫ 𝒟 𝑑𝑥𝑑𝑦𝑑𝑧 
where 𝒟 is the Lagrangian density 

Elastic rod example 
Can be first thought of as a discrete system of mass 

points with mass 𝑚 separated by springs with 
stiffness 𝑘, where the displacement of each mass 
point is 𝜂𝑖 , where 𝑎 is the displacement distance 
between the points. Using Hooke’s law, we get  

ℒ =
1

2
∑ 𝑎 [

𝑚

𝑎
�̇�𝑖

2 − 𝑘𝑎 (
𝜂𝑖+1 − 𝜂𝑖

𝑎
)

2

] = ∑ 𝑎ℒ𝑖

𝑖𝑖

 

In a continuous elastic rod, we instead have instead 
a continuous field variable/quantity 𝜂(𝑥, 𝑡)  

(
𝜂𝑖+1−𝜂𝑖

𝑎
) → (

𝜂(𝑥+𝑎,𝑡)−𝜂(𝑥,𝑡)

𝑎
) and 𝑎 → 𝑑𝑥,  

thus 𝑚
𝑎

→ 𝜇 is the mass per length, 𝑘𝑎 → 𝑌 is the 

Youngs Modulus. The Lagrangian becomes 

ℒ =
1

2
∫ 𝑑𝑥 [𝜇 (

𝑑𝜂

𝑑𝑡
)

2

− 𝑌 (
𝑑𝜂

𝑑𝑥
)

2

] 

 
Lagrange-Euler equations (field equations) 

𝑑

𝑑𝑥𝛽
(

𝑑𝒟

𝜕𝜂𝛼,𝛽
) −

𝜕𝒟

𝜕𝜂𝛼
= 0 

 

where 𝑥𝛽 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑐𝑡, 𝑥, 𝑦, 𝑧) and 

𝜂𝛼,𝛽 =
𝑑𝜂𝛼

𝑑𝑥𝛽
;     𝜂 ,𝑗 =

𝑑𝜂

𝑑𝑥𝑗
;      𝜂𝑖,𝛼𝛽 =

𝑑2𝜂𝑖

𝑑𝑥𝛼𝑑𝑥𝛽
 

 

where Greek letters refer to indices 1 to 3 and 
Lating letters refer to indices 0 to 3. 

 

The Lagrangian is denoted as ℒ ∫ 𝒟(𝑑𝑥𝑖) 

Stress-Energy Tensor properties 
Let 𝑢 a four-velocity of a observer. Let 𝑉 be 3D volume. 
The stress-energy tensor �⃡�   has “slots for two vectors” 

If 𝑢 is inserted into one of the vector slots, we get the 
output 

�⃡�  (𝑢, _) = �⃡�  (_, 𝑢) = − (density of 4-momentum,
𝑑𝐩

𝑑𝑉
) 

In component notation: 

𝑇    𝛽
𝛼  𝑢𝛼 = 𝑇𝛽

   𝛼 𝑢𝛽 = − (
𝑑𝑝𝛼

𝑑𝑉
) 

Result is the negative of the 4-momentum per unit 3D volume 
measured in the observer ref. frame at the event where �⃡�  is measured. 

Let 𝑛 be an arbitrary four-unit vector, then if inserted in 
the other slot: 

𝑇(𝑢, 𝑛) = 𝑇(𝑛, 𝑢) = − (𝑛 ⋅
𝑑𝐩

𝑑𝑉
) 

In component notation: 

𝑇𝛼𝛽𝑢𝛼𝑛𝛽 = 𝑇𝛽𝛼𝑢𝛽𝑛𝛼 = −𝑛𝜇 (
𝑑𝑝𝜇

𝑑𝑉
) 

Result is the negative of the component of the 4-momentum density 
along the 𝑛 direction. 

If both slots are 𝑢 
𝑇(𝑢, 𝑢) = "mass energy per unit volume" 

In component notation: 

𝑇𝛼𝛽𝑢𝛼𝑢𝛽 = 𝑇𝛽𝛼𝑢𝛽𝑢𝛼 = 𝑢𝜇

𝑑𝑝𝜇

𝑑𝑉
 

Result is mass energy per unit volume as measured in frame with 𝑢. 

If a frame is picked, and we insert two spacelike basis 
vectors 𝑒𝑖 and 𝑒𝑗 in that frame, the result is 

𝑇𝑖𝑗 = 𝑇𝑗𝑖 = 𝑇(𝑒𝑖, 𝑒𝑗) = 𝑇(𝑒𝑗, 𝑒𝑖) 
= 𝑖-componment of force acting from side 𝑥𝑗 − 𝛿 to 

side 𝑥𝑗 + 𝛿 across unit surface area perpendicular to 𝑒𝑗 
= 𝑗-componment of force acting from side 𝑥𝑖 − 𝛿 to 

side 𝑥𝑖 + 𝛿 across unit surface area perpendicular to 𝑒𝑖 

 

Stress-Energy tensor forms in component notation 
 

𝑇𝛼𝛽 = 𝑇𝛽𝛼 is the contravariant form 
𝑇𝜇𝜈 = 𝑇𝛼𝛽𝑔𝛼𝜇𝑔𝛽𝜈 is the covariant form 

𝑇    𝜈
𝜇 

= 𝑇𝛼𝛽𝑔𝛼𝜈 is the mixed form 

Stress-Energy Tensor 
Describes the density and flux of energy and 

momentum in spacetime.  
𝑇𝛼𝛽 gives the flux of the 𝛼-th component of the 

4-momentum vector across the surface with 
constant 𝑥𝛽 coordinate. 

The tensor can be displayed as a 4 × 4 matrix 

𝑇𝛼𝛽 = (

𝑇00 𝑇01
𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20

𝑇30
𝑇21

𝑇31
𝑇22

𝑇32
𝑇23

𝑇33

) 

 

Stress-Energy Tensor with Perfect Fuid 
Perfect fluid moving with four-velocity 𝑢 in 

space-time with mass-density 𝜌 and isotropic 
pressure 𝑝  in the rest frame of the fluid. 

Stress energy tensor is given by 
𝑇 = (𝜌 + 𝑝)𝑢 ⊗ 𝑢 + 𝑝𝑔 

in component form 
𝑇𝛼𝛽 = (𝜌 + 𝑝)𝑢𝛼𝑢𝛽 + 𝑝𝑔𝛼𝛽 

Inserting 𝑢 into one of the “slots” we get 
𝑇     𝛽

𝛼  𝑢𝛽 = [(𝜌 + 𝑝)𝑢𝛼𝑢𝛽 + 𝑝𝛿    𝛽
𝛼  ]𝑢𝛽 = 𝜌𝑢𝛼 

In the rest frame we get 
𝑇     𝛽

0 𝑢𝛽 = 𝜌𝑐    

𝑇    𝛽
𝑖 =

𝑑𝑝𝑖

𝑑𝑉
= momentum density = 0 

Thus 𝑇𝑖𝑘 = 𝑇(𝑒𝑖, 𝑒𝑘) = 𝑝𝛿𝑖𝑘 

 

A definition of Stress-Energy Tensor 
𝜕𝒟

𝜕𝑥𝜇
= −

𝑑

𝑑𝑥𝜈
[

𝜕𝒟

𝜕𝜂𝜌,𝜈
𝜂𝜌,𝜇 − 𝒟𝛿𝜇𝜈] 

If 𝒟 not expl. dep. on 𝑥𝜇 then 
𝑑

𝑑𝑥𝜈
[

𝜕𝒟

𝜕𝜂𝜌,𝜈
𝜂𝜌,𝜇 − 𝒟𝛿𝜇𝜈] =

𝑑𝑇𝜇
   𝜈

𝑑𝑥𝜈 
= 𝑇𝜇  ,𝜈

 𝜈 = 0 
 

where 𝑇𝜇
   𝜈 =

𝜕𝒟

𝜕𝜂𝜌,𝜈
𝜂𝜌,𝜇 − 𝒟𝛿𝜇𝜈 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  RELATIVISTIC FIELD THEORIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Klein-Gordon (complex scalar field example) 
The Lagrangian density will be given by 2 independent 
field variables 𝜙 and 𝜙∗which are 4-scalars and conjug. 

 

Let 𝒟 = 𝑐2𝜙 ,𝜆𝜙∗ ,𝜆 − 𝜇0
2𝑐2𝜙𝜙∗ where 𝜇0 const and 

𝜙 ,𝜆 =
𝜕𝜙

𝜕𝑥𝜆
        𝜙∗ ,𝜆 = 𝑔𝜆𝜈

𝜕𝜙

𝜕𝑥𝜈
 

Expressed in terms of space and time we have 
 

𝒟 = �̇��̇�∗ − 𝑐2∇𝜙 ⋅ ∇𝜙∗ − 𝜇0
2𝑐2𝜙𝜙∗ 

 

This Lagrangian density is Lorentz invariant. 

To obtain the field equations for 𝜂𝜌 = 𝜙∗ we note 
 

𝜕𝒟

𝜕𝜂𝜌,𝜈
=

𝜕𝒟

𝜕𝜙 ,𝜈
∗ = 𝑐2𝜙 ,𝜈        

𝜕𝒟

𝜕𝜂𝜌
=

𝜕𝒟

𝜕𝜙∗
= −𝜇0

2𝑐2𝜙 

which when put into the Lagrange-Euler equations give 
𝑑

𝑑𝑥𝜈
(𝑐2𝜙 ,𝜈) + 𝜇0

2𝑐2𝜙 = 0     ⇒      
𝑑

𝑑𝑥𝜈
(𝜙 ,𝜈) + 𝜇0

2𝜙 = 0 

⇒ 𝜙 ,𝜈
     𝜈 + 𝜇0

2𝜙 = 0 
Which is the same as 

∑
𝑑2𝜙

(𝑑𝑥𝜈)2
+ 𝜇0

2𝜙 = 0
𝜈

 

The equation of such satisfied by both 𝜙 and 𝜙∗ is the 
Klein-Gordon equation and is a relativistic analog of 

the Schrödinger Equation for a charged zero-spin 
particle with rest mass 𝜇0. 

 

sine-Gordon (real scalar field) 
From the example to the left, if the scalar field 

is real (i.e., 𝜙 = 𝜙∗), and to only exist in one 
spatial dim, then 

𝒟 =
1

2
[(

𝑑𝜙

𝑑𝑡
)

2

− 𝑐2 (
𝜕𝜙

𝜕𝑥
)

2

− 𝜇𝑜
2𝑐2𝜙2] 

Introduction of 1/2 is for convenience and 
does not change the equations of motion. 

We get the field equation 
𝜕2𝜙

𝜕𝑥2
−

1

𝑐2

𝜕2𝜙

𝜕𝑡2
= 𝜇𝑜

2𝜙2 

which is the one-dimensional Klein-Gordon eq. 

We can look at 𝒟 as a approximation to 
1

2
[(

𝑑𝜙

𝑑𝑡
)

2

− 𝑐2 (
𝜕𝜙

𝜕𝑥
)

2

] − 𝜇𝑜
2𝑐2𝜙2(1 − cos 𝜙) 

Which has field eq. 
𝜕2𝜙

𝜕𝑥2
−

1

𝑐2

𝜕2𝜙

𝜕𝑡2
= 𝜇𝑜

2 sin 𝜙 

Which is the sine-Gordon equation, also 
known as the pendulum equation. 

 
 

Electromagnetic field 
Let the components 𝐴𝜇 be treated as the field 

quantities, then  

𝒟 = −
𝐹𝜆𝜌𝐹𝜆𝜌

4
+ 𝑗𝜆𝐴𝜆 

where 𝐹 is the Faraday-tensor 

𝑐𝐹𝛼𝛽 =

(

 

0 𝐸𝑥 𝐸𝑦 𝐸𝑧

−𝐸𝑥 0 −𝑐𝐵𝑧 𝑐𝐵𝑦

−𝐸𝑦

−𝐸𝑧

𝑐𝐵𝑧

−𝑐𝐵𝑦

0
𝑐𝐵𝑥

−𝑐𝐵𝑥

0 )

  

and 𝑗 is the current density. 

To obtain the Euler-Lagrange equations, we note 
𝜕𝒟

𝜕𝐴𝜇
= 𝑗𝜇;    

𝜕𝒟

𝜕𝐴𝜇,𝜈
= −

𝐹𝜆𝜌

2

𝜕𝐹𝜆𝜌

𝜕𝐴𝜇,𝜈
 

Which gives us 

𝑑𝐹𝜇𝜈

𝑑𝑥𝜈
− √

𝜇0

𝜖0
𝑗𝜇 = 0   

Electromagnetic four-potential 

𝐴𝜇 = (
𝜙

𝑐
, 𝐀) where 𝜙 is electric potential and 𝐀 is the 

magnetic potential. 𝐄 = −∇𝜙 −
𝜕𝐀

𝜕𝑡
 

  NOETHERS THEOREM 

 

 

 

 

 

 

 

Three assumed conditions 
1. We are in flat space-time 

 

2. Lagrangian density displayes the same 
functional form in the old and new quantities: 

𝒟′(𝜂𝜌
′ (𝑥′𝜇), 𝜂𝜌,𝜈

′ (𝑥′𝜇), 𝑥′𝜇) = 𝒟(𝜂𝜌
′ (𝑥′𝜇), 𝜂𝜌,𝜈

′ (𝑥′𝜇), 𝑥′𝜇) 
 

3. Magnitude of the actins 𝑆 is invariant under 
transformation. (Scale invariance) 
 

Noethers theorem considers I.C.Ts on the form  
𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝛿𝑥𝜇 

And the effects of transform, of the field quantities 
𝜂𝜌(𝑥𝜇) → 𝜂𝜌

′ (𝑥′𝜇) = 𝜂𝜌(𝑥𝜇) + 𝛿𝜂𝜌(𝑥𝜇) 

Main conclusion of theorem 
𝑑

𝑑𝑥𝜈
[(

𝜕𝒟

𝜕𝜂𝜌,𝜈  
𝜂𝜌,𝜎 − 𝒟𝛿𝜎

𝜈) 𝑋𝑟
𝜎 −

𝜕𝒟

𝜕𝜂𝜌,𝜈
Ψ𝑟𝜌] = 0 

 

where 𝛿𝑥𝜈 = 𝜖𝑟𝑋𝑟
𝜈 and 𝛿𝜂𝜌 = 𝜖𝑟Ψ𝑟𝜌 

 

with 𝜖𝑟 being 𝑅 infinitesimal parameters 𝑟 = 1,2, … 𝑅 

 
In words: If the system (or Lagrangian density) has 
symmetry properties such that conditions 2 and 3 

hold, then there exist 𝑟 conserved quantities. 
 
 

Main conclusion of theorem (simple case) 
𝑑

𝑑𝑡
[(

𝜕𝐿

𝜕�̇�𝑘
�̇�𝑘 − 𝐿) 𝑋𝑟 −

𝜕𝐿

𝜕�̇�𝑘
Ψ𝑟𝑘] = 0 

which is for discrete mechanical systems. 
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