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Abstract — In this paper we use trigonometry and real analysis to show that the largest rectangle inside any
given right triangle has an area equal to half of the area of the right triangle. We also show that the largest
rectangle inside any given right triangle has either one side laying on and parallel with the hypotenuse with its
remaining vertices touching half way along each of the catheti, or it has two sides laying half way along and on
each of the catheti with the remaining vertex touching the hypotenuse.

I Defining any right triangle
We will define an arbitrary right triangle in a 𝑥-𝑦
Cartesian coordinate system, where the right angle
vertex is at the origin and the catheti are parallel to
each of the coordinate axes. Let the cathetus along
the positive 𝑦-axis have length 𝐻, and let the cathetus
along the positive 𝑥-axis have length 𝑊  (See Fig. 1).

Fig. 1.

With 𝐻 > 0 and 𝑊 > 0, we can, by this definition,
define any right triangle possible.

II A trivial observation
If we try to draw an arbitrary rectangle inside a given
right triangle, such that the rectangle seems to be as
large as possible, we quickly observe that no matter
how much we try to rotate or stretch and squish the
rectangle, it will always have at least one vertex on
the hypotenuse and at least one vertex on each of the
catheti (See Fig. 2 for examples).

Fig. 2.

By this trivial observation, it is safe to assume that
the largest rectangle in any given right triangle will
also have this property, meaning it will have at least
one vertex on the hypotenuse and at least one vertex
on each of the catheti.

III Defining the rectangle
Based on our observation from Section II, we can de-
fine such a rectangle as follows:

• Let there be a variable point 𝐴 = (0, 𝑦) along
the cathetus on the 𝑦-axis, and a variable point
𝐵 = (𝑥, 0) along the cathetus on the 𝑥-axis.

• Connect points 𝐴 and 𝐵 by a straight line, thus
creating the right triangle △ 𝐴𝑂𝐵, where 𝑂 is
the origin of the coordinate system.

• Let the angle 𝜑 equal the angle ∠𝐵𝐴𝑂, and
let the angle 𝜃 equal the top most angle in the
main right triangle (See Fig. 3).

1 of 7



Fig. 3.

We want 0 ≤ 𝜑 ≤ 𝜃 where 𝜃 < 𝜋
2  (More on this in Sec-

tion V). By simple trigonometry we have that

0 ≤ 𝜑 ≤ 𝜃
⇒ tan(0) ≤ tan(𝜑) ≤ tan(𝜃)

⇒ 0 ≤
𝑥
𝑦

≤
𝑊
𝐻

⇒ 0 ≤ 𝑥𝐻 ≤ 𝑦𝑊
⇒ 0 ≤ 𝑥 , 0 ≤ 𝑦

(1)

• Draw a line from 𝐴 onto a point 𝐶 = (𝑥𝐶 , 𝑦𝐶)
on the hypotenuse such that this new line is
perpendicular to the line connecting 𝐴 and 𝐵.

• Define the length of the line from 𝐴 to 𝐵 as ℎ,
and the length of the line from 𝐴 to 𝐶 as 𝑤.

• Complete the rectangle by drawing a line of
length 𝑤 from 𝐵 and a line with length ℎ from
𝐶 such that their ends meet and we complete
the rectangle (See Fig. 4).

Fig. 4.

Thus, given 𝐻 and 𝑊 , we have now defined a semi-
arbitrary rectangle in a given right triangle, where the
rectangle is only dependent on the variables 𝑥 and 𝑦.
Since points 𝐴 and 𝐵 are defined to be along the
catheti, and given the limitations from Eq. 1, we have
that 𝑥 ∈ [0, 𝑊], 𝑦 ∈ [0, 𝐻] and 𝑥𝐻 ∈ [0, 𝑦𝑊].

IV Area of the rectangle
The area of the rectangle is equal to 𝑤 ⋅ ℎ, and since
the rectangle is only defined by the variables 𝑥 and 𝑦,
we thus have to find the functions ℎ(𝑥, 𝑦) and 𝑤(𝑥, 𝑦).

The function ℎ(𝑥, 𝑦) is trivially found by the
Pythagorean theorem.

ℎ(𝑥, 𝑦) = √𝑥2 + 𝑦2 (2)

To find 𝑤(𝑥, 𝑦) we need to do some more trigonomet-
ric trickery. In Section III, we defined 𝑤 as the length
of the line connecting 𝐴 and 𝐶. We thus have that

𝑤 = √(𝑥𝐶 − 0)2 + (𝑦𝐶 − 𝑦)2 (3)

Let 𝑦𝐶 − 𝑦 = 𝑘. The placement of 𝐶 is obviously de-
pendent on the angle 𝜑, which in turn means that 𝑘
and 𝑥𝐶 are also dependent on 𝜑. This dependency is
easy enough to see if we draw a horizontal line from
the 𝑦-axis to 𝐶 as shown in Fig. 5.

Fig. 5.

This illustration shows that

tan(𝜑) =
𝑘

𝑥𝐶

⇒ 𝑥𝐶 =
𝑘

tan(𝜑)
=

𝑘
𝑥
𝑦

⇒ 𝑥𝐶 = 𝑘
𝑦
𝑥

(4)

and
𝑦𝐶 = 𝑦 + 𝑘 (5)

Note that if a point (𝑎, 𝑏) is on the hypotenuse of the
right triangle as we have defined, then the coordinates
of that point has the following property

𝑎
𝑊

+
𝑏
𝐻

= 1 (6)
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and since the point 𝐶 is on the hypotenuse, we have

𝑥𝐶
𝑊

+
𝑦𝐶
𝐻

= 1

⇒
(4)(5) 𝑘 𝑦

𝑥
𝑊

+
𝑦 + 𝑘

𝐻
= 1

⇒ 𝑘(
𝑦

𝑊𝑥
+

1
𝐻

) = 1 −
𝑦
𝐻

⇒ 𝑘(𝐻
𝑦
𝑥

+ 𝑊) = 𝑊𝐻 − 𝑊𝑦

⇒ 𝑘 =
𝑊𝐻 − 𝑊𝑦
𝑊 + 𝐻 𝑦

𝑥

⇒ 𝑘 =
𝑊𝑥(𝐻 − 𝑦)
𝑊𝑥 + 𝐻𝑦

(7)

We now have enough information to find an expres-
sion for 𝑤(𝑥, 𝑦)

𝑤 =
(3) √(𝑥𝐶 − 0)2 + (𝑦𝐶 − 𝑦)2

=
(4)(5) √(𝑘

𝑦
𝑥

)
2

+ 𝑘2

= 𝑘 √(
𝑦
𝑥

)
2

+ 1

= 𝑘
1
𝑥

 √𝑦2 + 𝑥2

=
(2)

𝑘
1
𝑥

 ℎ(𝑥, 𝑦)

⇒ 𝑤(𝑥, 𝑦) = ℎ(𝑥, 𝑦)
𝑘
𝑥

(8)

Finally, a function 𝑓 for the area of the rectangle can
be constructed

𝑓(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ⋅ 𝑤(𝑥, 𝑦)

=
(8)

ℎ(𝑥, 𝑦) ⋅ ℎ(𝑥, 𝑦)
𝑘
𝑥

= [ℎ(𝑥, 𝑦)]2
𝑘
𝑥

=
(2)

(𝑥2 + 𝑦2)
𝑘
𝑥

=
(7)

(𝑥2 + 𝑦2)
𝑊𝑥(𝐻 − 𝑦)
𝑊𝑥 + 𝐻𝑦

1
𝑥

= (𝑥2 + 𝑦2)
𝑊(𝐻 − 𝑦)
𝑊𝑥 + 𝐻𝑦

(9)

Note that our function 𝑓 is defined everywhere except
for (𝑥, 𝑦) = (0, 0). To remedy this, we take a look at
what happens when (𝑥, 𝑦) → (0, 0) and expand the
definition of 𝑓 .

Let 𝑦 → 0 along 𝑦 = 𝑥

lim
(𝑥,𝑦)→(0,0)

(𝑥2 + 𝑦2)
𝑊(𝐻 − 𝑦)
𝑊𝑥 + 𝐻𝑦

= lim
𝑥→0

(𝑥2 + 𝑥2)
𝑊(𝐻 − 𝑥)
𝑊𝑥 + 𝐻𝑥

= lim
𝑥→0

2𝑥2 𝑊(𝐻 − 𝑥)
𝑥(𝑊 + 𝐻)

= lim
𝑥→0

2𝑥
𝑊(𝐻 − 𝑥)

𝑊 + 𝐻

= 2 ⋅ 0 ⋅
𝑊(𝐻 − 0)
𝑊 + 𝐻

= 0

(10)

Thus, if a limit for 𝑓(𝑥, 𝑦) as (𝑥, 𝑦) → (0, 0) exists, it
has to be zero. We can check this by using the Squeeze
Theorem

0 ≤ |𝑓(𝑥, 𝑦)| = |(𝑥2 + 𝑦2)
𝑊(𝐻 − 𝑦)
𝑊𝑥 + 𝐻𝑦

|

≤ |(𝑥2 + 𝑦2)
𝑊𝐻

𝑊𝑥 + 𝐻𝑦
|

= |(𝑊𝐻𝑥2 + 𝑊𝐻𝑦2)
1

𝑊𝑥 + 𝐻𝑦
|

≤ |(𝑊𝐻𝑥2 + 𝐻2𝑥𝑦 + 𝑊 2𝑥𝑦 + 𝑊𝐻𝑦2)
1

𝑊𝑥 + 𝐻𝑦
|

= |(𝐻𝑥 + 𝑊𝑦)(𝑊𝑥 + 𝐻𝑦)
1

𝑊𝑥 + 𝐻𝑦
|

= |𝐻𝑥 + 𝑊𝑦|

(11)

We have that 0 and 𝐻𝑥 + 𝑊𝑦 both tend towards
0 as (𝑥, 𝑦) → (0, 0), therefore lim(𝑥,𝑦)→(0,0) 𝑓(𝑥, 𝑦) = 0
by the Squeeze Theorem. This coincides with the fact
that if 𝑥 = 0 and 𝑦 = 0 the area of the rectangle would
be zero, since points 𝐴 and 𝐵 would both be at the
origin, and the “rectangle” would end up as a straight
line from the origin to the hypotenuse.
We can thus expand our definition of 𝑓(𝑥, 𝑦) as such:

𝑓(𝑥, 𝑦) =
⎩{
⎨
{⎧(𝑥2 + 𝑦2)𝑊(𝐻−𝑦)

𝑊𝑥+𝐻𝑦 if 𝑥 ≠ 0 ∧ 𝑦 ≠ 0

0 if 𝑥 = 0 ∧ 𝑦 = 0
(12)

V Limits of the definition
We take note that the function 𝑓 from Eq. 12 only
works for the rectangle we have defined, which is spe-
cially limited by 0 ≤ 𝜑 ≤ 𝜃 where 𝜃 < 𝜋

2 . If 𝜑 > 𝜃,
then it would be impossible to keep the rectangle
completely inside the right triangle after drawing the
line from 𝐴 to 𝐶 (See Fig. 6).
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Fig. 6.

At first glance this might seem like we have limited
ourselves to only be able to define half of all possible
rectangles that would fit the case described in Sec-
tion II, this is not the case however.
Take the following situation, illustrated in Fig. 7,
where 𝜑 > 𝜃.

Fig. 7.

The situation illustrated in Fig. 7 will not work with
our function 𝑓 from Eq. 12 as 𝐶 would now have to
be defined by a straight line coming from 𝐵 to the
hypotenuse, instead of a line coming from 𝐴 to the
hypotenuse. A situation like this will lead to a differ-
ent function for the area of the rectangle, which is left
as an exercise for the reader.

However, if we flip the situation from Fig. 7 horizon-
tally and then rotate it 90 degrees with the clock, so
that the 𝑥- and 𝑦-axes switch places, we get the fol-
lowing situation illustrated in Fig. 8

Fig. 8.

Thus, we can obviously see that any situation where
𝜑 > 𝜃 is equivalent to a situation where 0 ≤ 𝜑 ≤ 𝜃,
where the 𝑥 and 𝑦 values, and 𝐻 and 𝑊  values have
switched places. Thus our definition of a rectangle
from Section III can indeed define all possible rectan-
gles that would fit the case described in Section II,
including the largest possible rectangle. And further
more, our function 𝑓(𝑥, 𝑦), for the area of the rec-
tangle, will assume all possible area sizes of these
rectangles.

VI The largest area
To find the largest area possible, we need to find the
maximum value of 𝑓 on its domain.

We already limited the domain 𝒟𝑓  of our function 𝑓
in Eq. 1, and it is as follows

𝒟𝑓 = (𝑥, 𝑦) ∈ ℝ2 | 0 ≤ 𝑦 ≤ 𝐻 , 0 ≤ 𝑥𝐻 ≤ 𝑦𝑊 (13)

Since 𝑓 is a continuous function (per our expansion
from Eq. 12) of two variables with a bounded and
closed domain 𝒟𝑓 ⊂ ℝ2, then 𝑓 will achieve a global
maximum value somewhere on its domain.

Further more, we have that our function 𝑓 can only
achieve a global extreme value at a given point (𝑎, 𝑏)
in 𝒟𝑓 , if:

a) ∇𝑓(𝑎, 𝑏) = 𝟎,
b) ∇𝑓(𝑎, 𝑏) is undefined, or
c) (𝑎, 𝑏) is a boundary point of 𝒟𝑓

Where ∇𝑓(𝑎, 𝑏) = 𝑓𝑥(𝑎, 𝑏)𝐢 + 𝑓𝑦(𝑎, 𝑏)𝐣 is the gradient
of 𝑓 at (𝑎, 𝑏).
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Situation a)
We start of by finding the critical points of 𝑓(𝑥, 𝑦).
That is, the points (𝑎, 𝑏) where ∇𝑓(𝑎, 𝑏) = 𝟎.

∇𝑓(𝑥, 𝑦) = 𝟎
⇔ 𝑓𝑥(𝑥, 𝑦)𝐢 + 𝑓𝑦(𝑥, 𝑦)𝐣 = 𝟎

⇔ 𝑓𝑥(𝑥, 𝑦) = 0 ∧ 𝑓𝑦(𝑥, 𝑦) = 0
(14)

thus we have to solve Eq. 14 for 𝑥 and 𝑦, which gives
us only one critical point at

𝑥 =
𝐻(−𝐻 +

√
𝑊 2 + 𝐻2)

2𝑊
 ∧  𝑦 =

𝐻
2

(15)

To find out whether or not this critical point is a local
maximum, we do the second derivative test for func-
tions of two variables, which generally goes as follows

𝑃 = 𝑓𝑥𝑥(𝑎, 𝑏), 𝑄 = 𝑓𝑥𝑦(𝑎, 𝑏), 𝑅 = 𝑓𝑦𝑦(𝑎, 𝑏)

𝑆 = 𝑄2 − 𝑃𝑅
𝑆 < 0 ∧ 𝑃 < 0 ⇒ (𝑎, 𝑏) is local max
𝑆 < 0 ∧ 𝑃 > 0 ⇒ (𝑎, 𝑏) is local min

𝑆 > 0 ⇒ (𝑎, 𝑏) is saddle point
𝑆 = 0 ⇒ inconclusive

(16)

When plotting the critical point 𝑥 and 𝑦 values from
Eq. 15 into the second derivative test, we get the fol-
lowing

𝑃 =
2𝑊

√
𝑊 2 + 𝐻2

𝑄 =
2𝐻

√
𝑊 2 + 𝐻2

− 2

𝑅 = −
2𝑊

√
𝑊 2 + 𝐻2

⇒ 𝑆 = (
2𝐻

√
𝑊 2 + 𝐻2

− 2)
2

+
4𝑊 2

𝑊 2 + 𝐻2

⇒ 𝑆 > 0

(17)

Thus, the critical point from Eq. 15 is a saddle point
by the second derivative test, and not a local max-
imum. In other words, there is no global maximum
when ∇𝑓(𝑥, 𝑦) = 𝟎.

Situation b)
The next step would be to check for when the gradi-
ent does not exist

∇𝑓(𝑥, 𝑦) is undefined

⇕

𝑓𝑥(𝑥, 𝑦) is undefined ∨ 𝑓𝑦(𝑥, 𝑦) is undefined

(18)

To determine whether Eq. 18 holds for some 𝑥 and 𝑦
value pair, we have to analyze the first partial deriv-
atives 𝑓𝑥 and 𝑓𝑦.

𝑓𝑥 = 𝑊(𝐻 − 𝑦)
−𝑊(𝑥2 + 𝑦2) + 2𝑥(𝐻𝑦 + 𝑊𝑥)

(𝐻𝑦 + 𝑊𝑥)2

𝑓𝑦 = 𝑊
−𝐻(𝐻 − 𝑦)(𝑥2 + 𝑦2)

(𝐻𝑦 + 𝑊𝑥)2

+
(𝐻𝑦 + 𝑊𝑥)(−𝑥2 − 𝑦2 + 2𝑦(𝐻 − 𝑦))

(𝐻𝑦 + 𝑊𝑥)2

(19)

Not the simplest of expressions, however, since 𝑊 > 0
and 𝐻 > 0, we can easily see that 𝑓𝑥 and 𝑓𝑦 are only
undefined for 𝑥 = 0 ∧ 𝑦 = 0 (since we would get zero
in the denominator of both). But since 𝑓(0, 0) = 0,
per our definition of 𝑓 from Eq. 12, we would not
achieve a global maximum at (0, 0), we would in fact
achieve a global minimum. In other words, there is no
global maximum when ∇𝑓(𝑥, 𝑦) is undefined.

Situation c)
Thus, we are left to look at the last place where 𝑓(𝑥, 𝑦)
can achieve extreme values, namely the boundary of
𝒟𝑓 . If we look at the domain 𝒟𝑓  of 𝑓 from Eq. 13,
we can see that we get three boundary situations:

𝑥 = 0 ∧ 0 ≤ 𝑦 ≤ 𝐻 (20)

𝑦 = 𝐻 ∧ 0 ≤ 𝑥𝐻 ≤ 𝑦𝑊 (21)

𝑥𝐻 = 𝑦𝑊 ∧ 0 ≤ 𝑦 ≤ 𝐻 (22)

Let us start with the first boundary situation from
Eq. 20 with 𝑥 = 0 and 𝑦 ∈ [0, 𝐻]

𝑓(0, 𝑦) = (02 + 𝑦2)
𝑊(𝐻 − 𝑦)
𝑊 ⋅ 0 + 𝐻𝑦

= 𝑦2 𝑊(𝐻 − 𝑦)
𝐻𝑦

= 𝑦
𝑊(𝐻 − 𝑦)

𝐻

=
𝑊(𝐻𝑦 − 𝑦2)

𝐻

(23)

We now find the extreme value points of 𝑓(0, 𝑦)

𝑓 ′(0, 𝑦) =
𝑑
𝑑𝑦

𝑊(𝐻𝑦 − 𝑦2)
𝐻

=
𝑊(𝐻 − 2𝑦)

𝐻

(24)

Note that 𝑓 ′(0, 𝑦) is well defined for 𝑦 ∈ [0, 𝐻],
and that for either 𝑦 = 0 or 𝑦 = 𝐻 we would have
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𝑓(0, 𝑦) = 0, which of course is not a maximum. Thus
𝑓(0, 𝑦) can only achieve a maximum at a point where
𝑓 ′(0, 𝑦) = 0

𝑓 ′(0, 𝑦) = 0
𝑊(𝐻 − 2𝑦)

𝐻
= 0

𝑊(𝐻 − 2𝑦) = 0
𝐻 − 2𝑦 = 0

𝑦 =
𝐻
2

(25)

We thus have our first potential global maximum at

𝑥 = 0  , 𝑦 =
𝐻
2

(26)

Moving on to the second boundary point from Eq. 21
where 𝑦 = 𝐻 and 𝑥𝐻 ∈ [0, 𝑦𝑊]. Looking at our func-
tion 𝑓 from Eq. 12, we can instantly see that 𝑦 = 𝐻
leads to 𝑓(𝑥, 𝑦) = 0, which of course is not a maxi-
mum.

𝑓(𝑥, 𝐻) = (𝑥2 + 𝐻2)
𝑊(𝐻 − 𝐻)
𝑊𝑥 + 𝐻2 = 0 (27)

Finishing off with the third and last boundary point
from Eq. 22 where 𝑥𝐻 = 𝑦𝑊  and 𝑦 ∈ [0, 𝐻]

𝑥𝐻 = 𝑦𝑊 ⇒ 𝑥 = 𝑦
𝑊
𝐻

(28)

𝑓(𝑦
𝑊
𝐻

, 𝑦) = [(𝑦
𝑊
𝐻

)
2

+ 𝑦2]
𝑊(𝐻 − 𝑦)

𝑊(𝑦𝑊
𝐻 ) + 𝐻𝑦

= (𝑦2 𝑊 2

𝐻2 + 𝑦2)
𝑊(𝐻 − 𝑦)
𝑦𝑊2

𝐻 + 𝐻𝑦

= 𝑦2(
𝑊 2

𝐻2 + 1)
𝑊(𝐻 − 𝑦)
𝑦(𝑊2

𝐻 + 𝐻)

= 𝑦(
𝑊 2

𝐻2 + 1)
𝑊(𝐻 − 𝑦)

𝑊2

𝐻 + 𝐻

= 𝑦(
𝑊 2

𝐻2 + 1)
𝑊𝐻(𝐻 − 𝑦)
𝑊 2 + 𝐻2

= (
𝑊 2

𝐻2 + 1)
𝑊𝐻(𝐻𝑦 − 𝑦2)

𝑊 2 + 𝐻2

(29)

We now find the extreme value points of 𝑓(𝑦𝑊
𝐻 , 𝑦)

𝑓 ′(𝑦
𝑊
𝐻

, 𝑦) =
𝑑
𝑑𝑦

(
𝑊 2

𝐻2 + 1)
𝑊𝐻(𝐻𝑦 − 𝑦2)

𝑊 2 + 𝐻2

= (
𝑊 2

𝐻2 + 1)
𝑊𝐻(𝐻 − 2𝑦)

𝑊 2 + 𝐻2

(30)

Note that 𝑓 ′(𝑦𝑊
𝐻 , 𝑦) is well defined for 𝑦 ∈ [0, 𝐻],

and that for either 𝑦 = 0 or 𝑦 = 𝐻 we would have
𝑓(𝑦𝑊

𝐻 , 𝑦) = 0, which of course is not a maximum.
Thus 𝑓(𝑦𝑊

𝐻 , 𝑦) can only achieve a maximum at a
point where 𝑓 ′(0, 𝑦) = 0

𝑓 ′(𝑦
𝑊
𝐻

, 𝑦) = 0

(
𝑊 2

𝐻2 + 1)
𝑊𝐻(𝐻 − 2𝑦)

𝑊 2 + 𝐻2 = 0

𝐻 − 2𝑦 = 0

𝑦 =
𝐻
2

(31)

Plotting 𝑦 = 𝐻
2  into 𝑥 = 𝑦𝑊

𝐻  we get 𝑥 = 𝑊
2 , and we

thus have our last potential maximum at

𝑥 =
𝑊
2

 , 𝑦 =
𝐻
2

(32)

We calculate 𝑓(𝑥, 𝑦) for both potential maximum
points, starting with the first one from Eq. 26

𝑓(0,
𝐻
2

) = [02 + (
𝐻
2

)
2

]
𝑊(𝐻 − 𝐻

2 )
𝑊 ⋅ 0 + 𝐻(𝐻

2 )

= (
𝐻
2

)
2

 
𝑊 𝐻

2
𝐻2

2

=
𝐻2

4
 
𝑊𝐻
𝐻2

=
𝑊𝐻

4

(33)

and the potential maximum point from Eq. 32

𝑓(
𝑊
2

,
𝐻
2

) = [(
𝑊
2

)
2

+ (
𝐻
2

)
2

]
𝑊(𝐻 − 𝐻

2 )
𝑊(𝑊

2 ) + 𝐻(𝐻
2 )

= (
𝑊 2

4
+

𝐻2

4
)

𝑊 𝐻
2

𝑊2

2 + 𝐻2

2

=
𝑊 2 + 𝐻2

4
 

𝑊𝐻
𝑊 2 + 𝐻2

=
𝑊𝐻

4

(34)

As we can see, the only two candidates left for being
the global maximum of 𝑓 are equal, and since 𝑓 has
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to have a global maximum, we can now conclude that
the largest value 𝑓 can achieve within its domain 𝒟𝑓
is 𝑊𝐻

4 , and that value occurs at (0, 𝐻
2 ) and (𝑊

2 , 𝐻
2 ).

What this entails is that the maximum area a rectan-
gle can have inside any given right triangle is 𝑊𝐻

4
which is the same has 1

2 ⋅ 𝑊𝐻
2 , or in other words, half

of the area of the right triangle. If we construct a
rectangle as we have defined earlier with these 𝑥 and
𝑦 values we get two situations. One where the rec-
tangle has one side laying on and parallel with the
hypotenuse with its remaining vertices touching half
way along each of the catheti as illustrated in Fig. 9.

Fig. 9.

And one where the rectangle has two sides laying half
way along and on each of the catheti with the remain-
ing vertex touching the hypotenuse as illustrated in
Fig. 10.

Fig. 10.

Where 𝑥𝐶 is calculated as such

𝑥𝐶 =
(4)

𝑘
𝑦
𝑥

=
(7) 𝑊𝑦(𝐻 − 𝑦)

𝑊𝑥 + 𝐻𝑦

=
𝑥=0 𝑦=𝐻

2 𝑊 𝐻
2 (𝐻 − 𝐻

2 )
𝐻 𝐻

2
=

𝑊 𝐻2

4
𝐻2

2

=
𝑊
4
1
2

=
𝑊
2

(35)

∎
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